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Chapter Overview

This chapter provides a comprehensive survey of the maiivetassumptions and pitfalls associated with com-
bining signals such as fMRI with EEG or MEG. Our initial focaghe chapter concerns mathematical approaches
for solving the localization problem in EEG and MEG. Next wacdment the most recent and promising ways
in which these signals can be combined with fMRI. Specifically look at correlative analysis, decomposition
techniques, equivalent dipole fitting, distributed soaro@deling, beamforming, and Bayesian methods. Due
to difficulties in assessing ground truth of a combined digmany realistic experiment—a difficulty further
confounded by lack of accurate biophysical models of BOLDhakg-we are cautious to be optimistic about
multimodal integration. Nonetheless, as we highlight axglae the technical and methodological difficulties
of fusing heterogeneous signals, it seems likely tdwatect fusionof multimodal data will allow previously in-
accessible spatiotemporal structures to be visualizedanthlized and thus eventually become a useful tool in
brain imaging research.

8.1 Introduction

Non-invasive functional brain imaging has become an ingmartool used by neurophysiologists, cognitive psy-

chologists, cognitive scientists, and other researcheesdsted in brain function. In the last five decades the
technology of non-invasive functional imaging has flowewat researchers today can choose from EEG, MEG,
PET, SPECT, MRI, and fMRI. Each method has its own strengths @&akmesses, and no single method is best
suited for all experimental or clinical conditions. Becao$¢he inadequacies of individual techniques, there is
increased interest in finding ways to combine existing tegkes in order to synthesize the strengths inherent
in each. In this chapter, we will: (a) examine specific norasive imaging techniques (EEG, MEG, MRI and
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Table 8.1:Notation used throughout this chapt&e chose our notation to match the most popular conventions
in the field, and at the same time minimize confusion. Reduhttat is likely to differ from the notation used

by each particular paper we reference. Following the usoaventions, we use bold upper case symbols for
matrices, bold lower case for vectors, and non-bold symioolscalars.

Symbol Meaning

Number of simultaneously active voxels

Number of voxelsi.e. spatial resolution of high spatial resolution modality &V
Number of EEG/MEG sensorse. spatial resolution of low spatial resolution modality
Number of time points of high temporal resolution modalBEG, MEG)
Number of time points of low temporal resolution modalitiRI)

Number of orthogonal axes for dipole moment componets,{1, 2, 3}
Identity matrix (zxn)

Zero matrix of appropriate dimensionality

GeneraEIMEG data matrix; can contain EEG or/and MEG dataxT)
BOLD fMRI data matrix (VxU)

Dipole sources matrix

GeneraBEMEG lead function, incorporating information for EEG or/avi&G
GeneraBEMEG lead matrix

Spatial filter matrix for the-th dipole (M x L)

Variance

Covariance matrix

Matrix of correlation coefficients

M Matrix transpose

M+ Generalized matrix inverse (pseudo-inverse)

null M Thenull spaceof M, the set of vector$x | Mx = 0}

diag M The diagonal matrix with the same diagonal elementslas

AAQST QLT XKeITNSHZz 2R

fMRI), (b) compare approaches used to analyze the data ebtdiom these techniques, and (c) discuss the
potential for successfully combining methodologies analyses.

Localizing neuronal activity in the brain, both in time anddpace, is a central challenge to progress in
understanding brain function. Localizing neural actifityn EEG or MEG data is calleelectromagnetic source
imaging (EMSI). EEG and MEG each provide data with high temporal lkggm (measured in milliseconds),
but limited spatial resolution. In contrast, fMRI providesogl spatial but relatively poor temporal resolution.
For some clinical purposes, or general localization, sat@thniques can be used for source imaging. However,
more specific localization of the neural activity requiresreisophisticated analyses; for these, researchers turned
to other disciplines that face similarly difficult localizan problems (seismology, remote sensing, noninvasive
signal processing, radar and sonar signal detection) $piriation and algorithms. Because the source localization
techniques used in EMSI serve as a starting point for sulesgquultimodal analysis, we will discuss these
methods first. We will review canonical problems of sourcealization, and how they have been attacked by
various researchers.

Following this section we discuss problems inherent in imdtal experiments and then explore how MR
modalities, which have high spatial resolution, can be daetbwith existing EMSI techniques in order to in-
crease localizatioprecision(for other reviews see George et al. (1995a); Nunez andrSthia (2000); Salek-
Haddadi et al. (2003); George et al. (2002)).

Demonstrated localizatioaccuracyremains a distant goal confounded by the lack of ground tiruiény
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realistic experimental multimodal protocol and the lacla@omplete model of the BOLD signal. Some progress
on some very simple experiments where there is a small nuofbsolated focal sources of activity which are
consistently present in all relevant modalities gives ysgtbat should be possible. We conclude that a convincing
demonstration of increased accuracy for a complex protwoald constitute a major success in the field.

Throughout this chapter we provide a consistent and compkdtof mathematical formulations that are stand
alone, we also provide appropriate context for this notaiio existing literature (Table 8.1 presents notation
used throughout this chapter). Our conclusions and suggedsbr future work make up the final section.

8.2 Source Localization in EEG and MEG

Electroencephalography (EEG) and magnetoencephalogi@pEG) have been widely used in research and
clinical studies since the mid-twentieth century. Althbugichard Caton (1842—-1926) is believed to have been
the first to record the spontaneous electrical activity eftihain, the term EEG first appeared in 1929 when Hans
Berger, a psychiatrist working in Jena, Germany, annoure#tetworld that “it was possible to record the feeble
electric currents generated on the brain, without opertiegskull, and to depict them graphically onto a strip of
paper.” The first SQUID-based MEG experiment with a humanesilvas conducted at MIT by Cohen (1972)
after his successful application of Zimmerman’s SQUID ses$o acquire a magneto-cardiogram in 1969. EEG
and MEG are closely related due to electro-magnetic cogplimd we will useMEG to refer generically to
either EEG, MEG, or both altogethédMEG provides high temporal resolution (measured in milbsets) but
has a major limitation: the location of neuronal activityndae hard to determine with confidence. In the next
section we lay out the specifics of each of #EG signals, the premises for conjolitEG analysis, and the
EMSI techniques which have been adopted for use in multifrexdiysis with fMRI data.

8.2.1 Assumptions Underlying Integration of EEG and MEG

The theory of electromagnetism and Maxwell’s equationsjenrthe assumption of quasi-stationafjtyheo-
retically defines the relationship between observed magaat electric fields which are induced by the ionic
currents generated inside the brain (see Malmivuo and 8Yo(1995); Okada et al. (1999); Murakami et al.
(2003) for more information about the biophysicsEbEG signals).

The similar nature of the EEG and MEG signals means that matiods of data analysis are applicable to
bothEMEG modalities. Although the SNR &MEG signals have improved with technological advances, and
some basic analysis has been performed by experts of/keiG data via visual inspection of spatial signal
patterns outside of the brain, more advanced methods anreddo use data efficiently. During the last two
decades manyyMEG signal analysis techniques (Michel et al., 2004) haven laksveloped to provide insights
on different levels of perceptual and cognitive processinguman brain: ERP (event related potential) in EEG
and ERF (event related field) in MEG, components analysis (RCA, etc), frequency domain analysis, pattern
analysis, single-trial analysis (Jung et al., 1999b; Tanal.e 2000b; Tang and Pearlmutter, 2008);. Source
localization techniques were first developed for MEG beedhe head model required for forward modeling of
magnetic field is relatively simple. Source localizatiomgsan EEG signal has been difficult to perform since the
forward propagation of the electric potentials is more chcaped. However, recent advances in automatic MRI
segmentation methods together with advances in forwardrasise EEG modeling, have made EEG source
localization plausible.

A signal is quasistatic if it does not change its parametetsrie. The non-stationary term present in #IEG physical model
is relatively small and can be considered zero in the rangigofl frequencies which are capturedEYIEG. See Fimalainen et al.
(1993) for a more detailed description.
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The theory of electromagnetism also explains why EEG and Mig@Gals can be considered complementary,
in that they provide different views on the same physiolabmhenomenon (Wikswo et al., 1993ah&alainen
et al., 1993; Cohen and Halgren, 2003). On one hand, oftemeextelifference is that MEG is not capable
of registering the magnetic field generated by the sourcasaite oriented radially to the skull surface in the
case of spherical conductor geometry. On the other hand M&SGhe advantage over EEG in that the local
variations in conductivity of different brain mattee.§. white matter, gray matter) do not attenuate the MEG
signal much, whereas the EEG signal is strongly influenceditfgrent types of brain matter and of the skull
in particular (Okada et al., 1999). The orientation selggticombined with the higher depth precision due to
homogeneity, make MEG optimal for detecting activity incs(ibrain fissures) rather than in gyri (brain ridges).
In contrast, a registered EEG signal is dominated by thel gpraces close to the skull and therefore more radial
to its surface. Yet another crucial difference is dictatgdobsic physics. The orthogonality of magnetic and
electrical fields leads to orthogonal maps of the magnetid &éird electrical potential on the scalp surface. This
orthogonality means that an orthogonal localization dio&ds the best localization direction for both modalities
(Malmivuo et al., 1997; Cohen and Halgren, 2003). These cemehtary features of the EEG and MEG signals
are what make them good candidates for integration (DaleSanelno, 1993; Baillet et al., 1999). The conjoint
EMEG analysis has improved the fidelity of EMSI localizationt bas not entirely solved the problem of source
localization ambiguity. Itis the reduction of this remaigiambiguity where information from other brain imaging
modalities may play a valuable role.

It is worth noting another purely technical advantage of M&@r EEG: MEG provides a reference-free
recording of the actual magnetic field. Whenever EEG sensaptie scalp potentials, a reference electrode
must be used as a ground to derive the signal of interest. éaete signal chosen in such a way can be
arbitrarily biased relative to the EEG signal observed avikan no neuronal sources are active. The unknown in
an MEG signal obtained using SQUID sensors, is just a constdime offset—the DC baseline. This baseline
depends on the nearest flux quantum for which the flux-locke@d bcquired lock (Vrba and Robinson, 2001,
pg. 265). Although the choice of a reference value in EEG hadXC line in MEG do not influence the analysis
of potential/field topographic maps, they do impact invesai@gtion algorithms which assume zero net source in
the headi.e. zero baseline. In general, the simple average referenossatite electrodes is used and it has been
shown to be a good approximation to the true reference s{ifiahel et al., 2004, sec. 2.2).

Even if the reference value (baseline) is chosen corrdmiy) conventional EEG and MEG face obstacles in
measuring the slowly changing DC component of the signdieraw frequency rangef(< 0.1 Hz). In the case
of EEG the problem is due to the often used coupling of theteldes via capacitors, so that any DC component
(slowly changing bias) of the EEG signal is filtered out. Tleves the researcher with non-zero frequency
components of the signal, which often correspond to the nmbéstmative part of the signal as in the case of
conventional ERP or frequency domain analysis. The DC-EEGpoomnt can be registered by using sensors
with direct coupling and special scalp electrodes that aléliged to eliminate changes of electrical impedance at
the electrode-skin interface which can cause low frequeise in the EEG signal. Although the MEG system
does not require direct contact between sensors and skenévertheless subject g/ f sensor noise which
interferes with the measurement of the neuronal DC fieldghérnast decade DC-MEG has been methodically
refined by employing controlled brain-to-sensor modutaatiowing the monitoring of low-frequency magnetic
fields. Formalized DGIMEG techniques make it possible to perfoEMEG studies, which rely on the shift of
DC and low frequency components of the signal; componeatsattcur, for example, during epileptic seizures,
hyperventilation, changes in vigilance states, cogniiivenotor tasks.
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8.2.2 Forward Modeling

The analysis oBMEG signals often relies on the solution of two related protdeTheforward problemconcerns
the calculation of scalp potentials (EEG) or magnetic fielear the scalp (MEG) given the neuronal currents in
the brain, whereas thiaverse probleninvolves estimating neuronal currents from the obsefe@&G data. The
difficulty of solving the forward problem is reflected in theversity of approaches that have been tried (see
Mosher et al. (1999) for an overview and unified analysis fiéecent methods).

The basic question posed by both the inverse and forwardgmshis how to model any neuronal activation
so that the source of the electromagnetic field can be mappiedttee observe@MEG signal. Assuming that
localized and synchronized primary currents are the gémsraf the observedMEG signals, the most successful
approach is to model theth source with a simple Equivalent Current Dipole (EGP)Brazier, 1949), uniquely
defined by three factors: location represented by the vegt@trengthg;, and orientation coefficien®. The
orientation coefficient is defined by projections of the veef; into L orthogonal Cartesian axe8; = q;/q;.
However, the orientation coefficient may be expressed bjegtions in two axes in the case of a MEG spherical
model where the silent radial to the skull component has bemioved, or even, just in a single axis if normality
to the cortical surface is assumed. The ECD model made itldedsi derive a tractable physical model linking
neuronal activation and observesl EG signals. In case df simultaneously active sources at tifrtee observed
EMEG signal at the sensar; positioned ap; can be modeled as

rzaqu Zg r;(t -qi(t) + e, (8.1)

whereg is alead fieldfunction which relates théth dipole and the potential (EEG) or magnetic field (MEG)
observed at thg-th sensor; and is the sensor noise. In the given formulation, functig(r;(¢), p,) returns a
vector, where each element corresponds to the lead cogff@ighe locationp,; generated by a unit-strength
dipole at positionr;(¢) with the same orientation as the corresponding projectiasm @& 6;. The inner-product
between the returned vector and dipole strength projextiornthe same coordinate axes yieldsth sensor the
measurement generated by thi dipole.

The forward model (8.1) can be solved at substantial contiput expense using available numerical meth-
ods (Pruis et al., 1993) in combination with realistic stanal information obtained from the MRI data (see
Section 8.4.1). This high computational cost is acceptailen the forward model has to be computed once per
subject and for a fixed number of dipole locations, but it carplohibitive for dipole fitting, which requires a
recomputation of the forward model for each step of nondingptimization. For this reason, rough approxi-
mations of the head geometry and structure are often wsgdbest-fit single sphere model which has a direct
analytical solution (Zhang, 1995) or the multiple sphereslel to accommodate for the difference in conductiv-
ity parameters across different tissues. Recently propigi&e@ forward modeling methods for realistic isotropic
volume conductors (Nolte, 2003, 2004) seem to be more atecanal faster than BEM, and hence may be useful
substitutes for both crude analytical methods and comipuataty intensive finite-element numeric approxima-
tions. Generally, the solution of the forward problem isatalifor performing source localization usitfMEG,
which is the main topic of the next section.

8.2.3 The Inverse Problem
Equivalent Current Dipole Models

The EEMEG inverse problem is very challenging (searfilainen et al. (1993); Baillet et al. (2001a) for an
overview of methods.) First, it relies on the solution of feeward problem, which can be computationally
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expensive, especially in the case of realistic head maglefiecond, the lead-field functighfrom (8.1) is non-
linear inr;, so that the forward model depends non-linearly on the locatof activations. It is because of this
nonlinearity that the inverse problem is generally tredtgdon-linear optimization methods, which can lead to
solutions being trapped in local minima. In case of Gaussggsor noise, the best estimator for the reconstruction
quality of the signal is the squared error between the obtbamd modele@MEG data:

E,a) =3 D (x(t) — %(ri i, 1) + Af(r,q), (8.2)

i t=t1 J

wheref(r,q) > 0 is often introduced to regularize the solutid®, to obtain the desired features of the estimated
signal g€.g.smoothness in time, or in space, lowest energy or dispgrsaod\ > 0 is used to vary the trade-off
between the goodness of fit and the regularization term.

This least-squares model can be applied to the individoa-points {; = t,) (“moving dipole” model) or
to a block ¢, < t,) of data points. If the sources are assumed not to changegdtlre block {;,t;), then the
solution with time constany;(t) = q; is the target.

Other features derived from the data besides piwEG signals as the argumenbf (8.1) and (8.2) are often
used:e.g.ERP/ERF waveforms which represent averagedEG signals across multiple trials, mean map in the
case of stable potential/field topography during some gesfdime, or signal frequency components to localize
the sources of the oscillations of interest.

Depending on the treatment of (8.2), the inverse problenbegoresented in a couple of different ways. The
brute-force minimization of (8.2) in respect to both paréener and q, and the consideration of differei
neuronal sources, is generally callE@D fitting Because of non-linear optimization, this approach workg on
for cases where there is a relatively small number of soufceand therefore the inverse problem formulation
is over-determined,e. (8.1) cannot be solved exactl§(r,q) > 0). If fixed time locations of the target dipoles
can be assumed, the search space of non-linear optimizatieduced and the optimization can be split into two
steps: (a) non-linear optimization to find locations of tiyotes, and then (b) analysis to determine the strength
of the dipoles. This assumption constitutes the so-calediotemporal ECD model

Two other frameworks have been suggested as means of aydidirpitfalls associated with non-linear op-
timization: Distributed ECD (DECD) and beamforming. We dissthese two approaches in detail in the next
sections.

Linear Inverse Methods: Distributed ECD

In case of multiple simultaneously active sources, anradiare to solving the inverse problem by ECD fitting
is a distributed source model. We will use the label DistelduECD (DECD) to refer to this type of model.
The DECD is based on a spatial sampling of the brain volume &tdhkditing the dipoles across all plausible
and spatially small areas, which could be a source of netemti@ation. In such cases, fixed locatioms) @re
available for each source/dipole, removing the necessityon-linear optimization as in the case of the ECD
fitting. The forward model (8.1) can be presented for a negetase in the matrix form

X =GQ, (8.3)

whereG, M x LN lead fieldmatrix, is assumed to be static in time. The-th entry ofG describes how much a
sensor; is influenced by a dipolg wherej varies over all sensors whilesaries over every possible source, or to
be more specific, every axis-aligned component of everyiplessource:g;; = G(r;, p;). The vector contains
indices ofL such projectiond,e.© = [3i,3i+ 1, 3i+ 2] whenL = 3, andz = i when the dipole has a fixed known
orientation. Using this notatiorG; corresponds to the lead matrix for a single dipgle The M xT matrix X
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holds theEMEG data, while the. N xT matrix Q (note thatQ,, = q,(¢)) corresponds to the projections of the
ECD’s moment ontd. orthogonal axes. X
The solution of (8.3) relies on finding an inver&e™ of the matrixG to express the estima€@ in terms ofX

Q=G"X, (8.4)

and will produce a linear maK — Q. Other than being computationally convenient, there ismath reason
to take this approach. The task is to minimize the error fiondi8.2), which can be generalized by the weighting
of the data to account for the sensor noise and its covarstnaeture:

L(Q) = tr((X - GQ)"'Wx (X - GQ)), (8.5)

whereWy! is a weighting matrix in sensor space.

A zero-mean Gaussian signal can be characterized by thke singariance matriXC,. In case of a non-
singularC, we can use the most simple weighting schéwig = C, to account for non-uniform and possibly
correlated sensor noise.

Such a brute-force approach solves some problems of ECD mggdspecifically the requirement for a non-
linear optimization, but, unfortunately, it introduceso#imer problem: the linear system (8.3) is ill-posed and
under-determined because the number of sampled possimeesocations is much higher than the dimension-
ality of the input data space (which cannot exceed the nuitsensors)i.e. N > M. Thus, there is an infinite
number of solutions for the linear system because any catibmof terms from the null space of will satisfy
equation (8.4) and fit the sensor noise perfectly. In othendgjomany different arrangements of the sources of
neural activation within the brain can produce any given MBBGEEG map. To overcome such ambiguity, a
regularization term is introduced into the error measure

L(Q) = L(Q) + Af(Q), (8.6)

where\ > 0 controls the trade-off between the goodness of fit and théaggation termf(Q).

The equation (8.6) can have different interpretations déjpg on the approach used to derive it and the
meaning given to the regularization terfiQ). All of the following methods provide the same result under
specific conditions (Baillet et al., 2001a; Hauk, 2004): Bégresnethodology to maximize the posterigQ|X)
assuming Gaussian prior @ (Baillet and Garnero, 1997), Wiener estimator with properandCg, Tikhonov
regularization to trade-off the goodness of fit (8.5) andregularization termf(Q) = tr(QTW§1Q) which
attempts to find the solution with weighted W(Ql minimal 2nd norm. All the frameworks lead to the solution
of the next general form

G" = (GTWx'G+ AW 'G'Wy" (8.7)

If and only if Wq andWx are positive definite (Grave de Peralta Menendez et al.,)A@04) is equivalent
to
GT=WqoG (GWqGT + \Wx) ™. (8.8)

In case when viable prior information about the source ithistion is availableQ , it is easy to account for it
by minimizing the deviation of the solution not fro(which constitutes the minimal 2nd norm solutiGh’),
but from the priorQ,,, i.e. f(Q) = tr((Q — Qp)TWg)l(Q —Q,))- Then (8.6) will be minimized at

Q=G'X+(I-G'G)Q,=Q,+G"(X-GQ,). (8.9)

For the noiseless case, with a weightegnorm regularizer, the Moore-Penrose pseudo-inversesgive
inverseG™ = G by avoiding the null space projections @f in the solution, thus providing a unique solution
with a minimal second nor@! = WG ' (GWoG ')~
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TakingWq = Iy, Wx = Iy andQ, = 0 constitutes the simplest regularized minimum norm sotutio
(Tikhonov regularization). Classically,is found using cross-validation (Golub et al., 1979) or kveu(Hansen,
1992) techniques, to decide how much of the noise power dhmeilbrought into the solution. Phillips et al.
(2002b) suggested iterative method ReML where the conditiexpectation of the source distribution and the
regularization parameters are estimated jointly. Addaioconstraints can be added to impose an additional
regularization: for instance temporal smoothness (Brobks €1999).

As presented in (8.8Y3" can account for different features of the source or dataesppincorporating them
correspondingly intdV g andW x. Next data-driven features are commonly used in EMSI

e Wx = C, accounts for any possible noise covariance structure @, it diagonal, will scale the error
terms according to the noise level of each sensor;

e Wq = W, = Cg accounts for prior knowledge of the sources covariancesire.

W q can also account for different spatial features

e Wq =W, = (diag (GTG))f1 normalizes the columns of the matix to account for deep sources by
penalizing voxels too close to the sensors (Lawson and Haid€34; Jeffs et al., 1987);

e Wq = Wyn, Where thei-th diagonal element incorporates the gray matter contetfte area of the-th
dipole (Phillips et al., 2002ai.e. the probability of having a large population of neurons ddg@af creating
the detecte@MEG signal,

e Wq = (W,"W,)™!, where rows ofW, represent averaging coefficients for each source (Backus and
Gilbert, 1968). So far only geometrical (Grave de Peraltandfelez and Gonzalez Andino, 1998) or bio-
physical averaging matrices (Grave de Peralta Menenddz 2084) were suggested,;

e Wy, incorporates the first-order spatial derivative of the im@@/ang et al., 1992) or Laplacian form
(Pascual-Marqui et al., 1994).

Features defined by the diagonal matrices)(W, and W,) can be combined through the simple matrix
product. An alternative approach is to pres@g, in terms of a linear basis set of the individ0&lq, factors,i.e.
Wq = tiWin + p2Wgnm + - - -, with later optimization of:; via the EM algorithm (Phillips et al., 2002a).

To better condition the under-determined linear inverssblem (8.4), Phillips et al. (2002a) suggested to
perform the inverse operation (8.4) in the space of the sdrg@envectors of th&/q. Such preprocessing
can also be done in the temporal domain, when a similar sabesgelection is performed using prior temporal
covariance matrix, thus effectively selecting the frequygmower spectrum of the estimated sources.

Careful selection of the described features of data and sapaces helps to improve the fidelity of the
DECD solution. Nevertheless, the inherent ambiguity of tivelise solution precludes achieving a high degree
of localization precision. It is for this reason that adulital spatial information about the source space, readily
available from other functional modalities such as fMRI ari&lTPcan help to condition the DECD solution
(Section 8.4.3).

Beamforming

Beamforming (sometimes called a spatial filter or a virtualsee) is another way to solve the inverse problem,
which actually does not directly minimize (8.2). A beamf@mattempts to find a linear combination of the input
dataq; = Fix, which represents the neuronal activity of each dipplé the best possible way one at a given

time. As in DECD methods, the search space is sampled, budninast to the DECD approach, the beamformer
does not try to fit all the observed data at once.
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The linearly constrained minimum variance (LCMV) beamforif\éan Veen et al., 1997) looks for a spatial
filter defined ag of size M x L minimizing the output energFiTCXFi under the constraint that onty; is
active at that timei.e. that there is no attenuation of the signal of inter@tG, = 6,,1;, where the Kronecker
deltad,; = 1 only if £ = 7 and0 otherwise. Because the beamforming fill&rfor the i-th dipole is defined
independently from the other possible dipoles, indesll be dropped from the derived results for the clarity of
presentation.

The constrained minimization, solved using Lagrange rpligtis, yields

F - (GiTC;(lGj)_IGjTC;(l (810)

This solution is equivalent to (8.7), when applied to a sndjpole with the regularization term omitted. Source
localization is performed using (8.10) to compute the varéof every dipoley, which, in the case of uncorrelated
dipole moments, is
vg = tr((G;'C{'Gy) ™). (8.11)
The noise-sensitivity of (8.11) can be reduced by using thisenvariance of each dipole as normalizing factor
ve = tr((G;' C.'G;)™!). This produces the so-calletbural activity index
2= (8.12)
Ve
An alternative beamformesynthetic aperture magnetometsy SAM (Robinson and Vrba, 1999), is similar
to the LCMV if the orientation of the dipole is defined, but itgsite different in the case of a dipole with an
arbitrary orientation. We define a vector of lead coeffigentd) as a function of the dipole orientation. This
returns a single vector for the orientati@rof thei-th dipole, as opposed to the earlier formulation in whiah th
L columns ofG; played a similar role. With this new formulation, we constrthe spatial filter

1

f(0) =
) gi(0) Cx'gi(9)
which, under standard assumptions, is an optimal lineamagir of the time course of theth dipole. The
variance of the dipole, accordingly, is also a functiod adpecificallyr, () = 1/ (gi(Q)TC;(lgi(Q)). To compute
the neuronal activity index the original SAM formulationessa slightly different normalization factor(0) =
£(0) " C.£(0), which yields a different result if the noise varianceGnis not equal across the sensors.

The unknown value of is found via a non-linear optimization of the neuronal agtiindex for the dipole:

va(V)
ve(V)
Despite the pitfalls of non-linear optimization, SAM filbeg provides a higher SNR to LCMV by bringing less
than half of the noise power into the solution. In additioAMSfiltering results in sharper peaks of the distribution
of neuronal activity index over the volume (Vrba and Robin2600).

Having computed,, andv, using SAM or LCMYV for the two experimental conditions: pagsfy) and active
(a), it is possible to compute a pseudwaluet for each location across the two conditions

g:(0) (Cx + \C.) ! (8.13)

0 = arg max

(a) (p)
=99 (8.14)
Z/E —"_ VE
Such an approach provides the possibility of considerinmearmental design in the analysis@fEG localiza-
tion.
Unlike ECD, beamforming does not require prior knowledgehaf humber of sources, nor does it search
for a solution in an underdetermined linear system as do&SIDEor these reasons, beamforming remains the
favorite method of many researchers in EMSI and has beerestegjfor use in the integrative analysistfEG

and fMRI which we cover in Section 8.4.3.
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8.3 Multimodal Experiments

Obtaining non-corrupted simultaneous recordings of EEG fMRI is a difficult task due to interference be-
tween the strong MR field and the EEG acquisition system. Beafithis limitation, a concurrent EEG/fMRI
experiment requires specialized design and preprocessamgiques to prepare the data for the analysis. The
instrumental approaches described in this section arefgpeccollecting concurrent EEG and fMRI data. For
obvious reasons MEG and fMRI data must be acquired separatetyp sessions. However, even when MR and
MEG are used sequentially, there is the possibility of comtation from the magnetization of a subject’s metallic
implants which can potentially disturb MEG acquisitiontifs performed shortly after the MR experiment.

8.3.1 Measuring EEG During MRI: Challenges and Approaches

Developing methods for the integrative analysis of EEG aviRifdata is difficult for several reasons, not the
least of which is the concurrent acquisition of EEG and fMReit has proved challenging. The nature of the
problem is expressed by Faraday’s law of induction: a timgimg magnetic field in a wire loop induces an
electromotive force (EMF) proportional in strength to thlreaaof the wire loop and to the rate of change of the
magnetic field component orthogonal to the area. When EEGetkss are placed in a strong ambient magnetic
field resulting in the EMF effect several undesirable congilons arise:

e Rapidly changing MR gradient fields and RF pulses may inducages in the EEG leads placed inside
the MR scanner. Introduced potentials may greatly obshedEG signal (Ives et al., 1993). This kind
of artifact is a real concern for concurrent EEG/MRI acqiosit Due to the deterministic nature of MR
interference, hardware and algorithmic solutions may e tbunmask the EEG signal from MR distur-
bances. For example, Allen et al. (2000) suggested an avaevageform subtraction method to remove
MR artifacts which seems to be effective (Salek-Haddadi.e2802). However, it is important to note
that time variations of the MR artifact waveform can reduweguccess of this method (Cohen et al., 2001,
Cohen, 2004). The problem can be resolved through hardwadgioation that increases the precision
of the synchronization of MR and EEG systems (Anami et al03®r during post-processing by using
precise timings of the MR pulses during EEG waveform averg@gCohen et al., 2001). Other techniques
that have been proposed to reduce MR and ballistocardibgraptifacts include spectral domain filter-
ing, spatial Laplacian filtering, PCA (Fig. 8.1), and ICA (sep&s et al., 1999; Bonmassar et al., 2002;
Garreffa et al., 2003; Negishi et al., 2004; Srivastava.e2a05)

e Even aslight motion of the EEG electrodes within the strdatjcsfield of the magnet can induce significant
EMF (Hill et al., 1995; Kruggel et al., 2000). For instancafive pulsatile motion related to a heart beat
yields a ballistocardiographic artifact in the EEG that bamoughly the same magnitude as the EEG signals
themselves (lves et al., 1993; Goldman et al., 2000). Ugsatth artifacts are removed by the same average
waveform subtraction method, where the waveform is an geeraesponse to each heartbeat.

¢ Induced electric currents can heat up the electrode leapaitdul or even potentially dangerous levels,
such as to the point of burning the subject (Lemieux et al97)9 Current-limiting electric components
(resistors, JFET transistorsic) are usually necessary to prevent the development of neesemrrents
which can have direct contact with subject’s scalp. Sinutat show the safe power range that should be
used for some coil/power/sensors configuration to complls DA guidelines (Angelone et al., 2004).

Another concern is the impact of EEG electrodes on the quafiMR images. The introduction of EEG
equipment into the scanner can potentially disturb the fgmneity of the magnetic field and distort the resulting
MR images (lves et al., 1993; Lazeyras et al., 2001). Recemtstigations show that such artifacts can be
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Figure 8.1: EEG MR artifact removal using PCA. EEG taken iaedite magnet (top); EEG after PCA-based
artifact removal but with ballistocardiographic artifagresent (center); EEG with all artifacts removed (bottom)
After artifact removal it can be seen that the subject cldssceyes at time 75.9s. (Courtesy of M. Negishi and
colleagues, Yale University School of Medicine.)
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effectively avoided (Krakow et al., 2000) by using spegialesigned EEG equipment (Goldman et al., 2000):
specialized geometries, and new “MR-safe” materials (cafiizer, plastic) for the leads. To test the influence
of a given EEG system on fMRI data, a comparison of the datecteitl both with and without the EEG system
being present, should be conducted. Analysis of such da@lysiemonstrates the same activation patterns in
two conditions (Lazeyras et al., 2001), although a gen@alehse in fMRI SNR is observed when EEG is present
in the magnet. A correction to the brain matter conducésitfwhich are used for forwatdMEG modeling) for
the Hall effect finds the following first-order correction be negligible:oy = 4.1 x 107 8¢ for B = 1.5T
Bonmassar et al. (2001).

8.3.2 Experimental Design Limitations

There are two ways of avoiding the difficulties associateti wollecting EEG data in the magnet: (1) collect EEG
and MRI data separately, or (2) use an experimental paradightén work around the potential contamination
between the two modalities. The decision between theseltarmatives will depend on the constraints associated
with research goals and methodology. For example, if anréxpat can be repeated more than once with a high
degree of reliability of the data, separ&EG and fMRI acquisition may be appropriate (Menon et al., 1997
Horovitz et al., 2002, 2004; Schulz et al., 2004). In casesw$imultaneous measurements are essential for
the experimental objective (e.g., cognitive experimeriten® a subject’s state might influence the results as in
monitoring of spontaneous activity or sleep state change®) of the following protocols can be chosen:

Triggered fMRI: detected EEG activity of interest (epileptic dischargie,) triggers MRI acquisition (Warach
et al., 1996; Seeck et al., 1998; Lazeyras et al., 2000; Kvakioal., 2001). Due to the slowness of the
HR, relevant changes in the BOLD signal can be registered 4#&rdlae event. The EEG signal can settle
quickly after the end of the previous MRI block (Goldman et 2000), so it is acquired without artifacts
caused by RF pulses or gradient fields that are present oniygdilee MRI acquisition block. Note that
ballistocardiographic and motion-caused artifacts stilh be present and will require post-processing in
order to be eliminated. Although this is an elegant soluiad has been used with some success in the
localization of epileptic seizures, this protocol doeséhdvawbacks. Specifically, it imposes a limitation
on the amount of subsequent EEG activity that can be mouiibtee EEG high-pass filters do not settle
down soon after the MR sequence is terminated (Huang-deltiat al., 1995). In this case, EEG hardware
that does not have a long relaxation period must be used. h&nafrawback with this approach is that
it requires online EEG signal monitoring to trigger the fMRIgaisition in case of spontaneous activity.
Often experiments of this kind are call&tEG-correlated fMRHdue to the fact that offline fMRI data time
analysis implicitly uses EEG triggers as the event onsetlekSHaddadi et al., 2002);

Interleaved EEG/fMRI: the experiment protocol consists of time blocks and onlyhglsimodality is acquired
during each time-block (Bonmassar et al., 2001; Makirant.eP004). This means that every stimulus
has to be presented at least once per modality. To analyze B@RM&RI activations, the triggered fMRI
protocol can be used with every stimulus presentation soBER& and MR are sequentially acquired in
order to capture a cledEG signal followed by the delayed HR (Sommer et al., 2003);

Simultaneous fMRI/EEG: pre-processing of the EEG signal mentioned in Section 83u$ed to remove the
MR-caused artifacts and to obtain an estimate of the true Bf@als However, neither of the existing
artifact removing methods is proved to be general enoughoit vor every type of EEG experiment and
analysis. It is especially difficult to use such an acquisischeme for cognitive experiments in which the
EEG evoked responses of interest can be of small amplitudle@npletely overwhelmed by the MR noise
(Schomer et al., 2000).
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8.4 Multimodal Analysis

There is an increasing number of report#dEG/fMRI conjoint studies, which attempt to gain the advaetagf
a multimodal analysis for experiments involving percepaual cognitive processes: visual perception (Lazeyras
et al., 2001; Singh et al., 2002; Sommer et al., 2003; Vanal.eR004) and motor activation (Lazeyras et al.,
2001), somatosensory mapping (Korvenoja et al., 1999; I3@twal., 2004), fMRI correlates of EEG rhythms
(Cohen et al., 2001; Goldman et al., 2002; Moosmann et al.3;208ufs et al., 2003a; Makiranta et al., 2004),
arousal and attention interaction (Foucher et al., 2004dijtary oddball tasks (Horovitz et al., 2002), passive
frequency oddball (Liebenthal et al., 2003), illusory figsiin visual oddball tasks (Kruggel et al., 2001), target
detection (Menon et al., 1997; Mulert et al., 2004), facepption (Horovitz et al., 2004), sleep (Huang-Hellinger
et al., 1995), language tasks (Vitacco et al., 2002; Singil. e2002), and epilepsy (Warach et al., 1996; Seeck
et al., 1998; Krakow et al., 1999a,b, 2001; Lantz et al., 20@ieux et al., 2001; Waites et al., 2005).

This section starts with an explanation of the role of anatahMRI in multimodal experiments followed by
a description of multimodal analysis methods used in the@abtentioned studies or test-driven on the simulated
data.

8.4.1 Using Anatomical MRI

The difference in captured MRI contrasts (proton densitt3)(or T1, T2 relaxation times) for different types
of organic tissue makes possible the non-invasive colleadf information about the structural organization of
the brain. In addition, a regular gradient or spin echo EBlusace is capable of detecting transient or subtle
changes of the magnetic field in cortical tissue caused byonal activation (Bodurka and Bandettini, 2002;
Xiong et al., 2003). However, direct application of MRI to tae functional activity remains limited due to a
low signal-to-noise ratio (SNR) which is why MRI is often laleelanatomical The next section briefly describes
the analysis of acquired high-resolution 3D images of tlanband how obtained structural information can be
used to analyze data collected from other modalities.

Registration of EEG and MEG to MRI

If an EEG experiment is performed inside the magnet, it isiids to “mark” (Lagerlund et al., 1993) the location
of the EEG sensors to make them distinguishable on the armabMRI. Coordinates for these locations can
then be found either manually or automatically (Sijberslet2®00) and will lie in MRI coordinate system. In
case when MR an8MEG data are acquired in separate sessions, spatial régistoetweer&MEG and MRI
coordinate systems must be performed before any anatomioaination can be introduced into the analysis of
EMEG data. There are two general possible ways for perfornggigtration between MRI arldMEG data: (a)
registering a limited set of fiducial points or (b) aligningcadp surfaces obtained during MRI with a digitization
of the scalp duringdMEG. Methods based on the alignment of the scalp surface®iaisglouds) considered to
perform better than those using fiducial-points (Schwarét.e1996; Huppertz et al., 1998; Kozinska et al., 2001,
Lamm et al., 2001), but are more computationally demandnthraly on iterative optimization. In addition, it
can be time consuming to obtain the dense digitization o$thgect’s head using a single point 3D digitizer. For
these reasons the fiducial points approach remains therm@étédvEG/MRI registration method (for instance
Lagerlund et al., 1993; Towle et al., 1993). The fiducial p®imethod involves the alignment of a limited
set of points, which have a strict known correspondence dmtvihe two spaces, so that each fiducial point
in EMEG space with coordinatexX) has a corresponding known point}() in MRI space. Such coupling
removes the possibility of being trapped in the local minwhéhe iterative surface aligning methods and makes
registration simple and fast. The precision of the derivadgformation can be increased by adding more pairs
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of correspondinggMEG and MRI points. A more detailed description of the regtgiramethod using fiducial
points follows.

Locations of the fiducial pointse(g. anatomical points: nasion, inion, pre-auricular pointdragus of the
left and right earlobes, vertex; MRI-visible capsules omelge-bar points (Singh et al., 1997; Adjamian et al.,
2004)) are captured together with the location&/®fEG sensors using a 3D digitizer and then matched to the
locations of corresponding fiducial points obtained frora &malysis of the MRI for the same subject. A 3D
rigid transformation of the points from tH@MEG (x”) to the MRI coordinate systenx{—?!) can be defined
by the rotation matrixR and translation vectov, so thatx®~* = Rx” + v. Commonly, the quadratic mis-

P
registration error measure is the subject to minimizatidR, v) = » (x} — x"~V

(]

)2, whereP is the number

of the points. Solutions can be found with simplified geor’matrformlulations (Wieringa et al., 1993), or iterative
search optimization using Powell’s algorithm (Singh et B97). Such simplifications or complications are not
necessary because the analytical form solutions have leaed in other fields (Horn, 1987; Horn et al., 1988),
and they are often used in the surface matching methodeedidicussed. For instance, quaternions (vectors in
L) can be natively used to describe a rotation in 3D spacerigddia straightforward solution of the registration
problent (Horn, 1987). This method is simple to implement. Its priecisapidly increases with the number of
fiducial points, reaching the performance of surface matghigorithms cheaply and efficiently.

Segmentation and Tessellation

PD or T1/T2 3D MR images can be used to segment different lissnes (white matter, gray matter, cere-
brospinal fluid (CSF), skull, scalp) as well as abnormal fdroms (tumors) (Dale and Sereno, 1993; Nielsen,
2001). Different kinds of MR contrasts are optimal for thgreentation of the different kinds of head and brain
structures. For instance, PD-weighted MRI yields supemgngentation of the inner and outer skull surfaces
because bones have much smaller water content than brsie tisaking the skull easily distinguishable on PD
images. On the other hand, exploiting T1 and T2 relaxatioe tilifferences between various sorts of brain tissue
leads to higher quality segmentation of structures with@krain.

Using triangulation (tessellation) and interpolatiorsipossible to create fine-grained smooth mesh represen-
tations or tetrahedral assemblies of the segmented ti¢Boepon, 1999; Dale et al., 1999; Shattuck and Leahy,
2002). Obtained 3D mesh of the cortical surface alone briadisable information to the analysis 8MEG

2To find the minimum of the error functionR,, v), we need merely to calculate a principal eigenvector

-
r = max_eigenvector {tr(AE) o ZTA_ tr(E)IJ (8.15)
where
P P T (2 — ET)23
X=3> % =5 (xf - xP)xM - xM) A= |(Z-2")y
i i (Z-32")p,

The eigenvector can be assumed to be normalized (unit length). Regarded a@atergiony = [rg, 71, o, 7-3]T uniquely defines the
rotation. This can be converted into a conventional rotai@trix

rg +7r?—r—r2 2(rire — 1oT3) 2(r1rs 4+ ror2)
R=| 2(rirg+rors) 134713 —12—r2  2(rars —rer1) | .
2(rirs — ror2) 2(rors +1ror1) TR 4T3 —12 — 13

The translation vector is then simply= x — Rx?.
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signals (Castellano, 1999): the physiology of the neuroeaégators can be considered, allowing one to limit the
search space for activated sources to the gray matter segi@horiented orthogonally or nearly so to the cortical
surface (Nunez, 1981; Dale and Sereno, 1993).

Monte Carlo studies (Liu et al., 1998) tested the influenca@birientation constraint in the case of the DECD
model and showed that such constraint leads to much bettditmming of the inverse problem while still being
robust to the error of the assumed cortical surface: randanation of the orientation i80° range leads to just a
slight increase of distortion, thus not significantly affieg the accuracy of the localization procedure. Anatom-
ical constraints improve the localization and contrastedirnforming imaging methods as well, but the use of
anatomical constraints found to be advantageous only mafBgood MRIEMEG coregistration (Hillebrand and
Barnes, 2003).

Forward Modeling of EEG and MEG

Volumetric structures derived from the tessellation pcage are used to create a realistic geometry of the head,
which is crucial for the forward modeling &#MEG fields. Previously, rough approximations based on best-fi
single/multiple sphere models were developed to overcdradotirden of creating realistic head geometry, but
they became less favorable as the increased availabilggwérful computational resources made more realistic
modeling possible. Spatial information is especially imant for EEG forward modeling due to the fact that
it is more strongly affected by the conductivities of thelslnd the scalp than the MEG forward model. Such
inhomogeneities might not affect the magnetic field at aiase of a spherical head model, when only the inner
skull surface is of the main concern for the forward modeling

There are four numerical methods available to solvé&tEG modeling problem, and the Boundary Elements
Method (BEM) (Hamalainen and Sarvas, 1989) is the most comymaed when isotropy (direction indepen-
dence) of the matters is assumed, so that only boundary siebkened by the tessellation process are required.
It was shown, however, that anisotropy of the skull (Mariralet 1998) and white-matter (Wolters et al., 2001)
can bias EEG and MEG forward models. To solve the forwardlprobn the case of an anisotropic medium,
the head volume is presented by a large assembly of small dmeous tetrahedrons, and a Finite Elements
Method (FEM) (Miller and Henriquez, 1990) is used to appnaie the solution. Another possible way is to use
the Finite Difference Method (FDM) on a regular computasilomesh (Saleheen and Ng, 1997). Table 8.2 lists
some publicly available software which can help perforntimg forwardEMEG modeling. Forward modeling
of EMEG signal rely on the knowledge of matter conductivities. @wn values of conductivities for different
tissues can be found in the literature (Geddes and Baker,)186Gan be estimated on a per-subject basis using
Electrical Impedance Tomography (EIT) (Goncalves et &Q3) or Diffusion Tensor (DT) (Tuch et al., 2001)
MRI.

8.4.2 Forward Modeling of BOLD Signal

The successful analysis of the results of a multimodal expart remains problematic. The main problem of
multimodal analysis is the absence of a general unifyingactof the BOLD fMRI signal in terms of the
characteristics of a neuronal response. Various models hagn suggested, on one hand they include naive
modeling of BOLD signal in the context of a Linear Time Invati&&ystem (LTIS). On the other hand there
are general models of the BOLD signal in terms of detailed lyscal processe®@lloon (Buxton and Frank,
1997) orVein and Capillary(Seiyama et al., 2004) models). The naive models are notrglezr@ough to explain
the variability of the BOLD signal, whereas complex parametrodels that rely heavily on a prior knowledge
of nuisance parameters (due to biophysical details), andoddave a reliable and straightforward means of
estimation. This fact makes it unlikely to use such compnelve models as reliable generative models of the
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BOLD signal. In the following section we describe modelinguiss in greater detail to further underline the
limited applicability of many multimodal analysis methaztssered in Section 8.4.3.

Convolutional Model of BOLD Signal

Various experimenters had originally focused on simpldremh designs such as block design paradigms in order
to exploit the presumed linearity between their designipatars and the HR. This assumption depends critically
on the ability of the block design to amplify the SNR and thligit belief that the HR possess more temporal
resolution than indicated by the TR.

In order to account for the present autocorrelation of thec&sed by its temporal dispersive nature, Friston
et al. (1994) suggested to model HR with a LTIS. To descrileedtlitput of such a system, a convolution of an
input (joint intrinsic and evoked neuronal activigyt)) with a hemodynamic response function (HRK}) is
used to model the HR

b(t) = (b * q)(t). (8.16)

Localized neuronal activity itself is not readily availablia means of non-invasive imaging, therefore it is
more appropriate to verify LTIS modeling on real data as afion of parameters of the presented stimué.(
duration, contrast).

The convolutional model was used on real data to demondimatity between the BOLD response and the
parameters of presented stimuli (Boynton et al., 1996; Cob@®7). In fact, many experimenters have shown
apparent agreement between LTIS modeling and real dataifiSjyeit has been possible to model responses to
longer stimuli durations by constructing them using the@oeses to shorter duration stimuli, which is consistent
with LTIS modeling. Because of the predictive success, ittive simplicity of application and resulting igno-
rance of biophysical details this modeling approach beocardely accepted. Unfortunately LTIS as a modeling
constraint is very weak therefore allowing an arbitraryichaf parametric HRF based only on preference and
familiarity.

Over the years multiple models for the HRF have been suggedtee most popular and widely used up
until now is a single probability density function (PDF) oa@ma distribution by Lange and Zeger (1997). It
was elaborated by Glover (1999) to perform the deconvailutibthe HR signal, and the nuisance parameters
(n1,1t1,n9, tg, as) Of the next HRF were estimated for motor and auditory areas

h(t) = L gm gt _ D2 yna o—t/ta where ¢; = maxt" e/t = ( ‘ ) " (8.17)
1 Co t n;t;

which can be described as the sum of two unscaled PDFs of Gatistnidution. The first term captures the
positive BOLD HR and the second term is to capture the ovetsbiten observed in the BOLD signal. Many
other simple and as well as more sophisticated models of HR& sugjgested: Poisson PDF (Friston et al., 1994),
Gaussians (Rajapakse et al., 1998), Bayesian derivationsigGitial., 2003; Gitelman et al., 2003; Marrelec
et al., 2003) and others. The particular choice of any of thes primarily dictated by some other than bio-
physics motivation: easy Fourier transformation, presesfgost-response dip or “best-fit” properties.

Since the suggestion of the convolutional model descriBi@®d.D response, different aspects of HR linearity
became an actively debated question. If HR is linear, thest fdatures of the stimulug.g.duration, intensity)
or neuronal activationg(g.firing frequency, field potentials, frequency power) doegaty linearly with? As
the first approximation, it is important to define the rangethe above mentioned parameters in which HR was
found to behave linearly. For example, early linearity sg&lover, 1999) showed the difficulty in predicting
long duration stimuli based on an estimated HR from shorteatibn stimuli. Soltysik et al. (2004) reviewed
existing papers describing different aspects of non-titean BOLD HR and attempted to determine the ranges
of linearity in respect to stimuli duration in three corlie@aeas: motor, visual and auditory complex. The results
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of these analyses have shown that although there is a stamynearity observed on small stimuli durations,
long stimuli durations show higher degree of linearity.

It appears that a simple convolutional model generally iscapable of describing the BOLD responses in
terms of the experimental design parameters if such arengaiy a wide range during the experiment. Never-
theless LTIS might be more appropriate to model BOLD respamgerms of neuronal activation if most of the
non-linearity in the experimental design can be explainethb non-linearity of the neuronal activation itself.

Neurophysiologic Constraints

In the previous section we explored the subject of linedréiween the experimental design parameters and the
observed BOLD signal. For the purpose of this review it may beennteresting to explore the relation between
neuronal activity and HR.

It is known thattMEG signals are produced by large-scale synchronous ndw@acinaty, whereas the nature
of the BOLD signal is not clearly understood. The BOLD signasinot seem to correspond to the neural activity
that consumes the most energy (Attwell and ladecola, 2082karly researchers believed. Furthermore, the
transformation between the electrophysiological indicebf neuronal activity and the BOLD signal cannot be
linear for the entire dynamic range, under all experimecalditions and across all the brain areas. Generally, a
transformation function cannot be linear since the BOLD algmdriven by a number of “nuisance” physiologic
processes such as cerebral metabolic oxygen consumptioR@zMcerebral blood flow (CBF) and cerebral
blood volume (CBV) as suggested by tBalloon model(Buxton and Frank, 1997), which are not generally
linear.

Due to the indirect nature of the BOLD signal as a tool to measiuronal activity, in many multimodal
experiments a preliminary comparative study is done firstrder to assess the localization disagreement across
different modalities. Spatial displacement is often fotmbe very consistent across multiple runs or experiments
(see Section 8.4.3 for an example). Specifically, obseriféestehces can potentially be caused by the variability
in the cell types and neuronal activities producing eactiqdar signal of interest Nunez and Silberstein (2000).
That is why it is important first to discover the types of nenalactivations that are primary sources of the BOLD
signal. Some progress on this issue has been made. A sepape@fs generated by a project to cast light on the
relationship between the BOLD signal and neurophysiologyehargued that local field potentials (LFP) serve
a primary role in predicting BOLD signal (Logothetis and Wahd2004, and references 27, 29, 54, 55 and 81
therein). This work countered the common belief that sgjlactivity was the source of the BOLD signal (for
example Arthurs and Boniface, 2002) by demonstrating a clesation of the observed visually evoked HR to
the local field potentials (LFP) of neurons than to the sgkactivity. This result places most of the reported
non-linearity between experimental design and observedittRhe non-linearity of the neural response, which
would benefit a multimodal analysis.

Note that the extracellular recordings experiments diesdrabove, were carried out over a small ROIs, there-
fore they inherit the parameters of underlying hemodyngmnacesses for the given limited area. Thus, even
if LFP is taken as the primary electrophysiological indocadf the neuronal activity causing BOLD signal, the
relationship between the neuronal activity and the hemaunhyo processes on a larger scale remains an open
question.

Since near-infrared optical imaging (NIOI) is capable gbtcaing the individual characteristics of cerebral
hemodynamics such as total, oxy-, and deoxy-hemoglobiteabnrsome researchers tried to use NIOI to reveal
the nature of the BOLD signal. Rat studies using 2D optical img¢Devor et al., 2003) showed the non-linear
mapping between the neuronal activity and evoked hemodinamcesses. This result should be a red flag for
those who try to define the general relation between neuamitadation and BOLD signal as mostly linear. The
conjoint analysis of BOLD and NIOI signals revealed the giB®LD signal during present neural activation
registered byyMEG modalities (Seiyama et al., 2004). This mismatch betw&sG and fMRI results is known
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as thesensory motor paradofPaulesu et al., 1997). To explain this effect, Wen and Capillarymodel was
used to describe the BOLD signal in terms of hemodynamic patens (Seiyama et al., 2004). The suggested
model permits the existence of silent and negative BOLD nes@® during positive neuronal activation. This
fact, together with an increasing number of studies (Stefignet al., 2004) confirming that sustained negative
BOLD HR is a primary indicator of decreased neuronal actvgtprovide yet more evidence that the BOLD HR
generally is not a simple linear function of neuronal adtombut at best is a monotone function which has close
to linear behavior in a wide range of nuisance neurophygiolparameters. We conclude this section by noting
that the absence of a generative model of the BOLD responsergsethe development of universal methods of
multimodal analysis. Nevertheless, as discussed in tltsoseand is shown by the results presented in the next
section, there are specific ranges of applications wherbnbarity between BOLD and neuronal activation can
be assumed.

8.4.3 Analysis Methods

Whenever applicable, a simple comparative analysis of thédteeobtained from the conventional uni-modal anal-
yses together with findings reported elsewhere, can be deresl as the first confirmatory level of a multimodal
analysis. This type of analysis is very flexible, as long @&srt#searcher knows how to interpret the results and
to draw useful conclusions, especially whenever the resdilcomparison reveal commonalities and differences
between the two (Vitacco et al., 2002). On the other hand,dfgiudt a unimodal analysis makes limited use of
the data from the modalities, and encourages researchimskidor analysis methods which would incorporate
the advantages of each single modality. Nevertheless |simgpection is helpful for drawing preliminary con-
clusions on the plausibility to perform any conjoint an&yssing one of the methods described in this section,
including correlative analysis which might be consideredratial approach to try.

Correlative Analysis of EEG and MEG with fMRI

In some experiments, tHAVEG signal can serve as the detector of spontaneous neuiivitlya e.g.epileptic
discharges) or changes in the processing statgsvigilance states). The time onsets derived fremMEG are
alone valuable for further fMRI analysis, where the BOLD sigoien cannot provide such timing informa-
tion. For instance, such use of EEG data is characteristith®experiments performed viaTaiggered fMRI
acquisition scheme (Section 8.3.2).

CorrelativeeMEG/fMRI analysis becomes more intriguing if there is a stergglief in the linear dependency
between the BOLD response and feature§haEG signal €.g.amplitudes of ERP peaks, powers of frequency
components), than between the hemodynamics of the braithentbrresponding parameter of the desiguy(
frequency of stimulus presentation or level of stimulusrddgtion). TherEMEG/fMRI analysis effectively
reduces the inherent bias present in the conventional fMRlyars methods by removing the possible non-
linearity between the design parameter and the evoked nalumesponse.

The correlative analysis relies on the preprocessinghEG data to extract the features of interest to be
compared with the fMRI time course. The obtait#dEG features first get convolved with a hypothetical HRF
(Section 8.4.2) to accommodate for the HR sloppiness antharesubsampled to fit the temporal resolution of
fMRI. The analysis of fMRI signal correlation with amplitudekselected peaks of ERPs revealed sets of voxels
which have a close to linear dependency between the BOLD mespand amplitude of the selected ERP peak
(N170 in Horovitz et al. (2004), P300 in Horovitz et al. (200a@nd amplitude of mismatch negativity (MMN)
(Liebenthal et al., 2003)), thus providing a strong cotiefa(P < 0.001 (Horovitz et al., 2004)). A parametric
experimental design with different noise levels introdliéer the stimulus degradation (Liebenthal et al., 2003;
Horovitz et al., 2004) or different levels of sound frequgdeviant (Liebenthal et al., 2003) helped to extend the
range of detected ERP and fMRI activations, thus effectivetyaasing the significance of the results found. To
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support the suggested connection between the specific ERRapddMRI activated area, the correlation of the
same BOLD signal with the other ERP peaks must be lower if anly @l@rovitz et al., 2004). As a consequence,
such analysis cannot prove that any specific peak of EEG dupem by the neurons located in the fMRI detected
areas alone but it definitely shows that they are connectdeispecific paradigm.

The search for the covariates between the BOLD signal and-spdead neuronal signals, such as the alpha
rhythm, remains a more difficult problem due to the ambigoityhe underlying process, since there are many
possible generators of alpha rhythms corresponding towarfunctions (Niedermeyer, 1997). As an example,
Goldman et al. (2002) and Laufs et al. (2003a) were lookimdgtfe dependency between fMRI signal and EEG
alpha rhythm power during interleaved and simultaneous /B acquisition correspondingly. They report
similar (negative correlation in parietal and frontal eat activity), as well as contradictory (positive corrigba)
findings, which can be explained by the variations in the arpental setup (Laufs et al., 2003b) or by the
heterogeneous coupling between the alpha rhythm and the B@&jbnse (Laufs et al.,, 2003a). Despite the
obvious simplification of the correlative methods, they rstly have a role to play in constraining and revealing
the definitive forward model in multimodal applications.

Decomposition Techniques

The common drawback of the presented correlative analgsbésigues is that they are based on the selection of
the specific feature of thEMEG signal to be correlated with the fMRI time trends, which ao¢ so perfectly
conditioned to be characterized primarily by the featurentdrest. The variance of the background processes,
which are present in the fMRI data and are possibly explaiyatédiscarded information from thH#EG data,
can reduce the significance of the found correlation. Thahigit was suggested (Martinez-Montes et al., 2004)
to use the entirety of thEMEG signal, without focusing on its specific frequency bandjdrive thesMEG and
fMRI signal components which have the strongest correlatimong them. The introduction of decomposition
techniques (such as basis pursuit, PCA, I@#) into the multimodal analysis makes this work particularly
interesting.

To perform the decomposition (Martinez-Montes et al., J0@artial Least-Squares (PLS) regression was
generalized into the tri-PLS2 model, which representsEii&G spectrum as a linear composition of trilinear
components. Each component is the product of spatial (arforigG sensors), spectral and temporal factors,
where the temporal factors have to be maximally correlatighl the corresponding temporal component of the
similar fMRI signal decomposition into bilinear componemisoducts of the spatial and temporal factors. Anal-
ysis using tri-PLS2 modeling on the data from Goldman et28l0R) found a decomposition into 3 components
corresponding to alpha, theta and gamma bands of the EE@Isifhe fMRI components found had a strong
correlation only in alpha band component (Pearson comalat83 (p = 0.005)), although the theta component
also showed a linear correlation@b6 (p = 0.070). It is interesting to note, that spectral profiles of thérteiar
EEG atoms received with and without fMRI influence were almdsentical, which can be explained either by
the non-influential role of fMRI in tri-PLS2 decompositionBEG, or just by a good agreement between the two.
On the other hand, EEG definitely guided fMRI decompositiorthat the alpha rhythm spatial fMRI component
agreed very well with the previous findings (Goldman et &02).

Equivalent Current Dipole Models

ECD is the most elaborated and widely used technique for sdoralization in EMSI. It can easily account
for activation areas obtained from the fMRI analysis thusngjhe necessary fine time-space resolution by
minimizing the search space of non-linear optimizationh® thresholded fMRI activation map. While being
very attractive, such a method bears most of the problemiseoECD method mentioned in Section 8.2.3, and
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introduces another possible bias due to the belief in tlimgtcoupling between hemodynamic and electrophys-
iological activities. For this reason it needs to be appnedowith caution in order to carefully select the fMRI
regions to be used in the ECD/fMRI combined analysis.

Although good correspondence between ECD and fMRI resulties dound (Ahlfors et al., 1999), some
studies reported a significant (1-5cm) displacement betlamtions obtained from fMRI analysis and ECD
modeling (Beisteiner et al., 1997; Korvenoja et al., 1999nlaaix et al., 2001; Gonzalez Andino et al., 2001). It
is interesting to note, that such displacement can be vergistent across the experiments of different researchers
using the same paradigm (for instance motor activationsv@wja et al., 1999; Kober et al., 2001; Schulz et al.,
2004)). As it was already mentioned, in the first step, a ssngomparison of detected activations across the
two modalities can be done to increase the reliability obtidocalization alone. Further, additional weighting
by the distance from the ECD to the corresponding fMRI actrafoci can guide ECD optimization (Wagner
and Fuchs, 2001) and silent in fMRI activations can be accodateal by introducing free dipoles without the
constraint on dipole location.

Auxiliary fMRI results can help to resolve the ambiguity oetmverseEMEG problem if ECD lies in the
neighborhood of multiple fMRI activations. Placing mulgpECDs inside the fMRI foci with successive op-
timization of ECDs orientations and magnitudes may produoeenmeaningful results, especially if it better
describes th&/MEG signal by the suggested multiple ECDs model.

Due the large number of consistent published fMRI resultse@ms viable to perform a pufEG experi-
ment with consequent ECD analysis using known relevant fMRVatton areas found by the other researchers
performing the same kind of experiment (Foxe et al., 2008)s fproviding the missing temporal explanation to
the known fMRI activations.

Linear Inverse Methods

Dale and Sereno (1993) formulated a simple but powerfullifmework for the integration of different imaging
modalities into the inverse solution of DECD, where the soflutvas presented as unregularized (just minimum-
norm) (8.8) withWq = Cg andA\Wx = C.. The simplest way to account for fMRI data is to use threstlde
fMRI activation map as the inverse solution space but thismepected (George et al., 1995b) due to its incapa-
bility to account for fMRI silent sources, which is why the &t incorporate variance information from fMRI
into Cg was further elaborated (Liu et al., 1998) by the introductid relative weighting for fMRI activated
voxels via constructing a diagonal matW q = Wr = {vii}, wherey;; = 1 for fMRI activated voxels and
vii = 1p € [0,1] for voxels which are not revealed by fMRI analysis. A Monte Gaimulation showed that
vy = 0.1 (which corresponds to th#% relative fMRI weighting) leads to a good compromise with thédity

to find activation in the areas which are not found active bfrfMnalysis and to detect active fMRI spots (even
superficial) in the DECD inverse solution. An alternativenfioitation of the relative fMRI weighting in the DECD
solution can be given using a subspace regularization (S8Rpique (Ahlfors and Simpson, 2004), in which
anEMEG source estimate is chosen from all possible solutionsrithésg theEMEG signal, and is such that it
minimizes the distance to a subspace defined by the fMRI daagR2). Such formulation helps to understand
the mechanism of fMRI influence on the invef$@EG solution: SSR biases underdeterminedc2k&G source
locations toward the fMRI foci.

The relative fMRI weighting was tested (Dale et al., 2000) mMEG experiment and found conjoint
fMRI/MEG analysis results similar to the results reportegirvious fMRI, PET, MEG and intracranial EEG
studies. Babiloni et al. (2001) followed Dale et al. (2000)airhigh resolution EEG and fMRI study to in-
corporate non-thresholded fMRI activation maps with otteatdrs. First of all, théWgr was reformulated
to (Weri)ii = v + (1 — 19)A;/Anax, Where A; corresponds to the relative change of the fMRI signal in
the i-th voxel, andAna is the maximal detected change. This way the reldfiviEG/fMRI scheme is pre-
served and locations of stronger fMRI activations have higier variance. Finally the three available weight-
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ing factors were combined: fMRI relative weighting, corteda structure obtained from fMRI described by
the matrix of correlation coefficientKg, and the gain normalization weighting mati¥,, (Section 8.2.3):
Wq = Wi, WLYPKW2WI2 - Although Wiye, alone had improved EMSI localization, the incorpo-
ration of theK s lead to finer localization of neuronal activation assoclateh finger movement.

Although most of the previously discussed DECD methods a@\ed in finding minimall, norm solution,
the fMRI conditioned solution with minimal; norm (regularization term in (8.6)(Q) = [|QJ|1) is shown
to provide a sparser activation map (Fuchs et al., 1999) activity focalized to the seeded hotspot locations
(Wagner and Fuchs, 2001).

An fMRI-conditioned linear inverse is an appealing metho@ duol its simplicity, and rich background of
DECD linear inverse methods derived for the analysi§EG signals. Nonetheless, one should approach these
methods with extreme caution in a domain where non-lineapliag between BOLD and neural activity is likely
to overwhelm any linear approximation (Gonzalez Andinole2®01).

Beamforming

Lahaye et al. (2004) suggest an iterative algorithm for @omjanalysis of EEG and fMRI data acquired simul-
taneously during an event-related experiment. Their ntktebes on iterated source localization by the LCMV
beamformer (8.10), which makes use of both EEG and fMRI date. cbvariance_ x used by the beamformer

is calculated anew each time step, using the previouslgnastid sources and current event responses from both
modalities. This way neuronal sites with a good agreememtden the BOLD response and EEG beamformer
reconstructed source amplitude, benefit most at eachigeratlthough the original formulation is cumbersome,
this method appears promising as (a) it makes use of botilabpat temporal information available from both
modalities, and (b) it can account for silent BOLD sources@sin electro-metabolic coupling constant which is
estimated for each dipole and defines the influence of the BOdakat a given location onto the estimation of
Cg which, in turn, drives the estimate 6fy.

Bayesian Inference

During the last decade, Bayesian methods became domindrg prababilistic signal analysis. The idea behind
them is to use Bayes’ rule to derivgasterior probabilityof a givenhypothesisaving observed dat®, which
serves agvidencdo support the hypothesis

p(DIH) p(H)
p(D)

wherep(H) andp(D) are prior probabilities of the hypothesis and evidenceaspondingly, and the conditional
probability p(D|H) is known as dikelihood function Thus, (8.18) can be viewed as a method to combine the
results of conventional likelihood analyses for multipygpbtheses into the posterior probability of the hypotheses
p(H|D) or some function of it, after been exposed to the data. Thigaetkeposterior probability can be used to
select the most probable hypothesis,the one with the highest probability

p(H|D) = (8.18)

Hyp = arg max p(H|D) = arg maxlog p(D|H) + log p(H) (8.19)

leading to the maximuna posteriori (MAP) estimate, where the prior data probabiliiyD) (often called a
partition functior) is omitted because the data does not depend on the choibe ai/pothesis and it does not
influence the maximization ovét.

For the class of problems related to the signal processiyygpthesisH generally consists of a modgh
characterized by a set of nuisance parameets {0,, 6, ., }. The primary goal usually is to find a MAP estimate
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MEG only With fMRI
A MEG Source Space C Subspace Defined by fMRI
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Figure 8.2: Geometrical interpretation of subspace regaton in the MEG/EEG source space. (A) The cerebral
cortex is divided into source elemenis, q-, . .., qx, each representing an ECD with a fixed orientation. All
source distributions compose a vectpm K-dimensional space. (B) The source distributiprs divided into
two componentg® € S = range(G '), determined by the sensitivity of MEG sensors afids null G, which
does not produce an MEG signal. (C) The fMRI activations defivaleer subspacé™R'. (D) The subspace-
regularized fMRI-guided solution>SR € M is closest toS™R! minimizing the distancéPq>SR|, whereP (a

N x N diagonal matrix withP;; = 1/0 when thei-th fMRI voxel is active/inactive) is the projection matrixto
the orthogonal complement 6fVR'. (Adapted from Ahlfors and Simpson (2004, Figure 1), withnpission.)
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of some quantity of interegk or, more generally, its posterior probability distributio( A|D, M, ®). A can be

an arbitrary function of the hypothesis or its componehts- f(), or often just a specific nuisance parameter
of the modelA = 6,. To obtain posterior probability of the nuisance parametemarginal probability has to
be computed by the integration over the rest of the paramete¢he model

Due to the integration operation involved in determinatbany marginal probability, Bayesian analysis becomes
very computationally intensive if analytical integral stibn does not exist. Therefore, sampling techniques
(e.g.MCMC, Gibbs sampler) are often used to estimate full postgmiobability p(A|D, M), MAP A|D7M =

arg maxa p(A|D, M), or some statistics such as an expected valuk|D, M] of the quantity of interest.

The Bayesian approach sounds very appealing for the develupai multimodal methods. It is inher-
ently able to incorporate all available evidence, whichni®ur case obtained from the fMRI aMEG data
(D = {X,B}) to support the hypothesis on the location of neuronal atitms, which is in the case of DECD
model isH = {Q, M}. However, the detailed analysis of (8.18) leads to necessauplifications and assump-
tions of the prior probabilities in order to derive a compigtaally tractable formulation. Therefore it often loses
its generality. Thus to derive a MAP estimator ’@{XB’M Trujillo-Barreto et al. (2001) had to condition the
computation by a set of simplifying modeling assumptionshsas: noise is normally distributed, nuisance pa-
rameters of forward models have inverse Gamma prior digtabs, and neuronal activation is described by a
linear function of hemodynamic response. The results onlsiad and experimental data from a somatosensory
MEG/fMRI experiment confirmed the applicability of Bayesianrhalism to the multimodal imaging even under
the set of simplifying assumptions mentioned above.

Usually, modelM is not explicitly mentioned in Bayesian formulations (susl{&20)) because only a single
model is considered. For instance, Bayesian formulation@RETA EMEG inverse corresponds to a DECD
model, where® = Q is constrained to be smooth (in space), and to cover whotexsurface. In the case of
the Bayesian Model Averagin(BMA), the analysis is carried out for different modeld;, which might have
different nuisance parametersg.EMEG and BOLD signals forward models, possible spatial locatiof the
activations, constraints to regularig®EG inverse solutions. In BMA analysis we combine results iobth
using all considered models to compute the posterior Higion of the quantity of interest

m&mzzp@mwmmwm» (8.21)

where the posterior probability M;|D) of any given model\; is computed via Bayes’ rule using prior proba-
bilities p(M;), p(D) and the likelihood of the data given each model

p(DIM,) = / p(D|®. M,) p(©|M,) d®. (8.22)

Initially, BMA was introduced into th&/MEG imaging (Trujillo-Barreto et al., 2004), where Bayesiatein
pretation of (8.8) was formulated to obtaifQ|X, B) for the case of Gaussian uncorrelated noM&( = C, =
v J). In order to create a model, we partition the brain volunte alimited set of spatially distinct functional
compartments, which are arbitrarily combined to definefg search space for ttVEG inverse problem.

At the end, different models are sampled from the posteriobgbility p(M;|X) to get the estimate of the
expected activity distribution of ECDs over all consideredrse models

E[QX] = ZE@XMHMM)

Var[Q|X] = ZVarQ|X M;] p(M;|X),
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where the normalized probabilip(.M;|X), Bayes’ Facto3;,, and prior oddsy;, are

~ p(X[M,) p(M;)

Bip = —1+% o; =

Z o, B p(X|M0)

In the original BMA framework folEMEG (Trujillo-Barreto et al., 2004); = 1V, i.e. the models had a flat
prior PDF because no additional functional information \&mailable at that point. Melie-Gaecet al. (2004)
suggested to use the significance values of fMRI statisticaqps to derivep(M;) as the mean of all such
significance probabilities across the presentia compartments. This strategy causes the models considting o
the compartments with significantly activated voxels gghlr prior probabilities in BMA. The introduction of
fMRI information as the prior to BMA analysis reduced the anuliig of the inverse solution, thus leading to
better localization performance. Although further anelys necessary to define the applicability range of the
BMA in EMEG/fMRI fusion, it already looks promising because of the osBRI information as an additional
evidence factor iftfMEG localization rather than a hard constraint.

Due to the flexibility of Bayesian formalism, various Bayesmathods solvingdMEG inverse problem al-
ready can be easily extended to partially accommodate megdebtained from the analysis of fMRI data. For in-
stance, correlation among different areas obtained froRIf¥ata analysis can be used as a prior in the Bayesian
reconstruction of correlated sources (Sahani and Nagrar2(®4). The development of a neurophysiologic gen-
erative model of BOLD signal would allow many Bayesian infe@methods (such as Schmidt et al. (1999)) to
introduce complete temporal and spatial fMRI informatiotoithe analysis offMEG data.

8.5 Considerations and Future Directions

Although the BOLD signal is inherently non-linear as a fuontof neuronal activation, there have been multiple
reports of linear dependency between the observed BOLD mespand the selected set of tHRIEG signal
features. In general, such results are not inconsisteht twé& non-linearity of BOLD, since of course, a non-
linear function can be well approximated in a context of acffmeexperimental design, or regions of interest, or
dynamic ranges of the selected feature§/EG signals. Besides LFP/BOLD linearity reported by Logotheti
and confirmed in the specific frequency bands of EEG signahgutashing checkerboard experiment (Singh
et al., 2003), there have been reports of a strong corraldtedween the BOLD signal amplitude and other
features oEIMEG responses.

In the past, DGEIMEG signal have not been of an attention for multimodal ird&gn, despite recent exper-
iments showing the strong correlation between the changte @mbserved DC-EEG signal and hemodynamic
changes in the human brain (Vanhatalo et al., 2003). In $ach DCEMEG/BOLD coupling suggests that the
integration of fMRI and DGEMEG might be a particularly useful way to study the nature ef iilme varia-
tions in HR signal which are usually observed during fMRI expents but are not explicitly explained by the
experimental design or the physics of the MR acquisitiorcess.

Many EMSI methods can be naturally extended to account faRIfiata if a generative forward model of
BOLD signal is available. For instance, direct universgitagimator inverse methods (Jun et al., 2003; Jun and
Pearlmutter, 2005) have been found to be very effective, (fabust to noise and to complex forward models)
for the EMEG dipole localization problem, and could be augmented teptcfMRI data if the generative model
were augmented to produce it.

FMRI conditionedEMEG DECD methods have been shown to be a relatively simple arldematically
compelling for source imaging when there is good spatiatagrent betweeBMEG and fMRI signals. Due to
the advantages of such methods, it might be valuable to @ensther advancedMEG DECD methods such
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as FOCUSS (Gorodnitsky and Rao, 1997), which is known to brmgrévement of estimation of focal sources
over simple linear inverse methods (Baillet et al., 2001b).

ICA as a signal decomposition technique has been found efettd remove artifacts ilfMEG without
degrading neuronal signals (\go et al., 2000; Tang et al., 2000a; Jung et al., 2000a,b)eaver is known to
be superior to PCA in the component analysi§®fEG signals (Jung et al., 1999a). Initial research using ICA
of fMRI in the spatial domain (McKeown et al., 1998) was coméxsial, however consecutive experiments and
generalization of ICA to fMRI in the temporal domain (see Calnetial. (2003) for an overview) has increased
its normative value. The development of ICA methods for thalysis of multimodal data provides a logical
extension of the decomposition techniques covered earlibe chapter.

Since most of the multimodal methods presented in this enapty upon the linear dependence between
signals, it is important to analyze, expand and formalizekimowledge about the “linear” case. The formulation
of a general BOLD signal model capable of describing the ddsnon-linear dependency in terms of neuronal
activation and nuisance physiological parameters woultstitite a major step toward the development of the
multimodal methods with wider range of application thanha turrent “linear” domain. Without such a model
and without valid estimates of the underlying physiologarameters involved in the model, no multimodal
analysis results can be trusted as novel.

In sum, it seems clear that fMRI should serve as a complemeatédence factor, rather than a hard con-
straint, inEEMEG source localization methods. The preprocessing of béRi indEMEG signals should be done
in order to select features of interest which had been puslyaeported to have good agreement between the two
modalities. Any multimodal experiment should be based ercttmparative study of unimodal experiments and
analyses which show good agreement before performing ictrjata analysis.
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Table 8.2: Free software germane to multimodal analysiss@sBMEG/fMRI data & stands for Input/Output facility for a feature)
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Package M MO L ML WO oo@o»n 0 - o = o EDE
Brainstorm (Leahy et al., 2004) v Vv v Vv v Vv = Vv R
NeuroFEM (2005)/Pebbles VAvAAVAVAV VY v V3
BioPSE (2002)/SCIRun (2002) v VvV J Y = J = uCZ))
Brainvisa/Anatomist (Poupon, 1999) vV v<© vV vV vV vV
FreeSurfer (2004) vV v vV Vv AR
Surefit (Van Essen, 2004) Vv v vV Vv Vv
Brainsuite (Shattuck and Leahy, 2002) VoV YV Vv
EEG/MEG/MRI tlbx* (Weber, 2004) v Vv VARV = = = = Vv v
MEG tlbx* (Moran, 2005) v VARV vV v Vv VAN VYV
EEGLAB/FMRILAB (Delorme and Makeig, 2004) i v oV

TAn extensive MR segmentation bibliography is availabléran(Nielsen, 2001).

tPOSIX includes all versions of Unix and GNU/Linux. Most PG$iackages listed use X Windows for their graphical output.

*Matlab Toolbox.
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