Boosted Spatial and Temporal Precision in Functional Brain Imaging via Multimodal Analysis

Yaroslav O. Halchenko

yh42@njit.edu

Computer Science Department, NJIT

Ph.D. Thesis Proposal

General

Develop methods to achieve superior spatio-temporal resolution by combining signals from different brain imaging modalities that possess complementary temporal and spatial advantages.

Specific

Show that it is possible to obtain trustworthy estimate of neuronal activity at superior spatio-temporal resolution by combining EEG/MEG with fMRI data whenever forward models of the signals are appropriate to describe the data in terms of underlying neuronal processes.

Fundamental

How can we understand brain function?

Localization

Which areas of the brain are involved in the processing during a specific task?

Brain dynamics

What are the interactions among the areas during a specific task?

Forward problem

How brain signals and stored information can be modeled to produce registered measurements?

Inverse problem

How viable estimates of the neuronal processes inside the brain can be obtained from a limited set of observations outside the brain?

Signal processing

What characteristics (*e.g.* non-stationarity, statistical or frequency features, *etc.*) of the brain imaging data should be explored under heavy noise conditions?

Introduction	Research ೦೦೦೦೦೦೦೦೦೦	Problem Area	Simulations	Plan
Outline				

4 Simulations

Introduction	Research	Problem Area	Simulations	Plan
Brain Imag	ing			

Introduction	
000000000	Ô

Research

Problem Area

Simulations

EEG

Fait-days	
Faithing	
Fighter and the second	
00.000	
P3-0-10	and the second s
OT-Ave	
FT-Ave	
FR AVE	
TRANE	- ACTUAL CONTRACT
Textes	
-	- A A A A A A A A A A A A A A A A A A A
TRACK	
A1.6-F	
AR-AVR	
Factory.	and the second s
100.000	
Factory.	
Alternation of the second	

MRI

Research

Problem Area

Simulations

Non-Invasive Unimodal Brain Imaging

Electro- and Magnito- EncephaloGraphy

Common features

- Passive technique
- Post-synaptic ionic currents of synchronized pyramidal neurons generate the electro-magnetic field registered by E/MEG

Differences

EEG

- On the head surface
- Electric potential
- Reference electrode
- Silent to solenoidal currents

MEG

- Outside of the head
- Magnetic field
- Reference-free
- Silent to radially oriented currents

Introduction oo●oooooooo	Research ೦೦೦೦೦೦೦೦೦೦	Problem Area	Simulations	Plan		
Non-Invasive Unimodal Brain Imaging						
€/MEG Brain	Imaging					

Linear formulation: DECD

Both magnetic and electric fields linearly depend on the current strength at densely sampled fixed spatial locations

$$\mathbf{X} = \mathbf{G}\mathbf{Q}$$

X $(M \times T) - E/MEG$ data; **G** $(M \times N)$ – spatial filter (lead-field/gain matrix); **Q** $(N \times T)$ – current strengths at each location

Easy!

For the linear case the solution is $\hat{\mathbf{Q}}=\mathbf{G}^{+}\mathbf{X}$

Research

Problem Area

Simulations

Non-Invasive Unimodal Brain Imaging

Not That Easy: Inverse Problem

Plan

Introduction	Research ೦೦೦೦೦೦೦೦೦೦	Problem Area	Simulations	Plan		
Non-Invasive Unimodal Brain Imaging						
Inverse Problem						

Why it is problematic

III-posed: the number of possible signal source locations (N) greatly exceeds the number of sensors (M) – infinite number of solutions

Ill-conditioned: instrumental and brain noise prevents from achieving stable solution by simply increasing number of sensors

Introduction 0000000000	Research 0000000000	Problem Area	Simulations	Plan
Non-Invasive Unimodal B	rain Imaging			
∉⁄MEG Inver	se Regular	ization		
Minimal 2	nd norm solut	ion: pseudo-inv	verse	

 $\mathbf{G}^{\dagger} = \mathbf{G}^{\top} (\mathbf{G} \mathbf{G}^{\top})^{-1}$

Regularization: general formulation

$$\mathbf{G}^+ = \mathbf{W}_{\mathbf{Q}}\mathbf{G}^\top (\mathbf{G}\mathbf{W}_{\mathbf{Q}}\mathbf{G}^\top + \lambda \mathbf{W}_{\mathbf{X}})^{-1},$$

where W_X^{-1} and W_Q^{-1} are weighting matrices in sensor and source spaces correspondingly

Introduction	Research ೦೦೦೦೦೦೦೦೦೦	Problem Area	Simulations	Plan
Non-Invasive Unimodal Brain	Imaging			
⊧/MEG Pro et	Contra			

Pros: great temporal resolution

- Great for any event related design
- Epileptic spikes detection
- Coherence analysis
- Human brain interface

Cons: poor localization in space

- Non-linear optimization in the case of dipole modeling
- Inverse problem in the case of distributed dipole modeling

Research

Problem Area

Simulations

Non-Invasive Unimodal Brain Imaging

fMRI: Blood Oxygenation Level Dependent

Pros

Great spatial resolution: 1 mm and higher

Safe: does not require injections of radioactive isotopes

Cons

Indirect measurement: BOLD response reflects oxygenation

Low temporal resolution:

- Full volume can be acquired just every 2-4 seconds
- BOLD signal itself is of convolved nature

Noise:

- Inhomogeneities
- Blood vessels influence

Research

Problem Area

Simulations

Plan

Non-Invasive Unimodal Brain Imaging

Motivation for Multimodal Imaging

- Superior spatial resolution of fMRI
- Fine temporal resolution of E/MEG
- Reported agreement between E/MEG and BOLD signals

Research

Problem Area

Simulations

Multimodal Brain Imaging

Existing Multimodal Techniques

- Correlative analysis
- Decomposition analysis
- Constrained equivalent current dipole (ECD) modeling
- FMRI-conditioned distributed ECD modeling
- Beamforming with fMRI-conditioned covariance
- Bayesian inference

Introduction ○○○○○○○○○	Research 0000000000	Problem Area	Simulations	Plan
Multimodal Brain Imaging				
Problems				

- Absent generative model of BOLD signal
- Variability of BOLD across subjects and within the brain
- True neural signal is not known
- Methods do not make use of temporal fMRI information

Research

Problem Area

Simulations

Integration

Major Obstacle: Absent Generative BOLD Model

Linear Time Invariant System

$$f(t) = (h * q)(t)$$

Hemodynamic Response Function

- Canonical hemodynamic response function (HRF)
 Subject-specific HRF: motor cortex
 - Subject-specific HRF : visual cortex

[Kalina Christoff, 2001]

Research

Problem Area

Simulations

Integration

BOLD Signal: LTIS (Convolutional) Model

Observation

Convolutional model is valid in many cases

Convolutional model

- provides good agreement between LFP and BOLD response
- permits the estimation of convolution kernel using simple stimulus
- has been used in most of the fMRI studies
- can be augmented with non-linearity to accommodate divergence from LTIS model

Introduction	Research ○○●○○○○○○○	Problem Area	Simulations	Plan
Integration				
Forward Mo	odels			

•	Temporally and spatially superior modality \mathbf{Q} ($N \times T$) is used to					
	reconstruct both F and X observed signals					
Modality Data Matrix Size Model Description					Description	
	Е/мEG	X	$M \times T$	$\hat{\mathbf{X}} = \mathbf{G}\mathbf{Q}$	Spatial Filter	
	fMRI	F	N×U	$\hat{\mathbf{F}} = \tilde{\mathbf{Q}}\mathbf{B}$	Temporal Filter	

Advantages

- Modeling both E/MEG and fMRI makes use of temporal and spatial information from both modalities
- Reconstruction of fMRI along with E/MEG provides regularization to the inverse E/MEG problem

Research

Problem Area

Simulations

Plan

Integration

The Unknown: Dipole Strength \leftrightarrow BOLD

Scaling between dipole strength and BOLD signal is not known and can vary from location to location

Solutions

- Restrict range of applications to activations in small (thus approximately homogeneous) regions
- For the area of interest estimate scaling along with convolution kernel using simple experimental design
- Augment the model to include scaling parameter per each local region

Introduction	Research ○○○○●○○○○○○	Problem Area	Simulations	Plan
Integration				
Reconstru	uction Error			

Residuals

$$\Delta_X(Q) = \frac{\hat{X}(Q) - X}{\sqrt{\nu_X M T}} \text{ and } \Delta_F(Q) = \frac{\hat{F}(Q) - F}{\sqrt{\nu_F N U}}$$

Quality of the reconstruction criterion:

$$\mathcal{E}_{l}(\mathbf{Q}) = \|\Delta_{\mathbf{X}}(\mathbf{Q})\|_{l} + \alpha \|\Delta_{\mathbf{F}}(\mathbf{Q})\|_{l} + \lambda \, \mathcal{C}(\mathbf{Q})$$

where

 $l \in \{1, 2\}$: the norm of error cost function $C(\mathbf{Q})$: additional regularization term

Research

Problem Area

Simulations

Integration

l = 2: Gradient Descent Optimization

$$\frac{\partial \mathcal{E}_r(\mathbf{Q})}{\partial \mathbf{Q}} = \frac{\partial \Delta_{\mathbf{X}}(\mathbf{Q})}{\partial \mathbf{Q}} + \alpha \frac{\partial \Delta_{\mathbf{F}}(\mathbf{Q})}{\partial \mathbf{Q}} + \lambda \frac{\partial \mathcal{C}(\mathbf{Q})}{\partial \mathbf{Q}}$$

$$\frac{\partial \Delta_{\mathbf{X}}(\mathbf{Q})}{\partial \mathbf{Q}} = 2\mathbf{G}^{\mathsf{T}}(\mathbf{X} - \mathbf{G}\mathbf{Q}), \ \frac{\partial \Delta_{\mathbf{F}}(\mathbf{Q})}{\partial \mathbf{Q}} = 2\boldsymbol{\Theta} \star \left((\mathbf{F} - \tilde{\mathbf{Q}}\mathbf{B})\mathbf{B}^{\mathsf{T}} \right)$$

Problems

0 4

Optimization can fall into local minima

Research

Problem Area

Simulations

Plan

Integration

Linear Programming Formulation

Minimization task can be formulated as an LP problem

$$egin{array}{lll} \hat{\mathbf{X}} + \Delta_{\mathbf{X}} &= \mathbf{X} & \textit{Constraints} \ \hat{\mathbf{F}} + \Delta_{\mathbf{F}} &= \mathbf{F} \ ilde{q}_{ij} &\geq 0 & \textit{Region} \ \mathcal{E} = \|\Delta_{\mathbf{X}}\|_{1} + & lpha \|\Delta_{\mathbf{F}}\|_{1} & \textit{Objective} \end{array}$$

Problems

- Efficient LP solvers are necessary due to the large size of LP problem (MOSEK)
- Possibly poor performance if noise is indeed Gaussian

Introduction 0000000000	Research ○○○○○○●○○○	Problem Area	Simulations	Plan
Localization				

Localization Workflow

Research

Problem Area

Simulations

Localization

Localization Workflow

Plan

Research

Problem Area

Simulations

Localization

Classifier as a Localizer

Localization using classifiers

Temporal: trained classifier

Spatial: sensitivity map of the classifier

Advantages

- Notion of generalization
- Fast classification after the classifier has been trained

Disadvantages

- Training can be lengthy
- Might not generalize
- Sensitivity map might reflect just a subset of activations

Research

Problem Area

Simulations

Localization

Localization Using SVM

- Great ability to generalize
- Fast to train (constrained quadratic problem)
- Can easily work with data of huge dimensionality
- Sensitivity map of linear SVM is given by the decision hyper-plane normal
- Results are consistent with conventional analysis

Research

Problem Area

Simulations

Somatotopy: Mapping of the Primary Motor (M1)

- Simple motor response
- Experiment is easily reproducible
- Coarse information about spatial organization is available
- Temporal separation between events is easily controllable

Introduction	Research	Problem Area	Simulations	Plan

M1 Mapping

Possible problems

- Convolutional model might not be valid
- Activations in other areas (PMA, SMA and PI) can interfere with registration of the signal of interest
- Suggested multimodal analysis methods may not produce good estimates of neuronal activity

Solutions

- Carry out a pilot experiment to verify applicability of the convolutional model
- Augment the model with non-linearity if necessary
- Preprocess the data to extract signal components of interest (ICA?, SOBI?)

Research

Problem Area

Simulations

Artificial Data

Region of Interest: M1 "hand area"

(a) Cortical Mesh

(b) 895 Surrounding 2 mm Voxels

Plan

Introduction	Research 0000000000	Problem Area	Simulations oecococococ	Plan
Artificial Data				
Datasets				

E/MEG sensors: 30 sensors (895 voxels)

- Sampling rate: Sources (and E/MEG): 16 [Hz], fMRI: 1 [Hz]
 - Duration: Sources (and E/MEG): 1 [sec], fMRI: 10 [sec]

Noise: (1) Gaussian white and (2) empirical

Noise levels: $\varepsilon = \sigma_{\epsilon} / \max(s) \in [0, 0.1, 0.2, 0.4, 0.6]$

An activation: Modeled as a Gaussian (σ =50 [ms])

Trials: 30 trials

Arrangement: 5 datasets

- Spatially non-overlapping:
 [1, 10, 100, 895] active
- Spatially overlapping: 10 randomly activated locations followed by 2nd activation within next 100–300 [ms]

Research

Problem Area

Simulations

Multimodal Analysis Methods Compared

FMRI Conditioned ⊭MEG Inverse (FMRI-DECD)

$$\hat{\mathbf{Q}} = \mathbf{G}^{+}\mathbf{X},$$
 where $\mathbf{G}^{+} = \mathbf{W}_{\mathbf{Q}}\mathbf{G}^{\top}(\mathbf{G}\mathbf{W}_{\mathbf{Q}}\mathbf{G}^{\top})^{-1}$

$\begin{array}{l} \mbox{Conditioning of the inverse}:\\ Truncated SVD of (GW_QG^{\top})\\ \mbox{Gain matrix normalization}:\\ W_Q = W_n = \left(diag \left(G^{\top} G \right) \right)^{-1}\\ \mbox{Relative fMRI weighting}:\\ (W_{fMRI\prime})_{ii} = \nu_0 + (1 - \nu_0) \varDelta_i / \varDelta_{max}.\\ \nu_0 \in [1.0, \, 0.5, \, 0.1] \mbox{ which corresponds to} \end{array}$

0, 50, and 90% of relative fMRI weighting

Dipole orientations :

Variable and Fixed

Introduction	Research ০০০০০০০০০০০	Problem Area	Simulations ○○●●○○○○○○	Plan			
Multimodal Analysis Methods Compared							
L_2 -Fusion							

$$\hat{\mathbf{Q}} = \arg\min_{\mathbf{Q}} \|\Delta_{\mathbf{X}}(\mathbf{Q})\|_2 + \alpha \|\Delta_{\mathbf{F}}(\mathbf{Q})\|_2$$

Trade-off Parameter :

 $\alpha = [\, {\rm 0.5}, \, {\rm 1}, \, {\rm 10}]$ for a tradeoff between E/MEG and FMRI fit was used

Introduction		Research	Pro	blem Are	а	Simulations	Plan
Source Reconstru	uction Resu	lts					
_					-		

Reconstruction Quality Criterion

Relative noise energy brought into the source signal estimation

$$m{E} = \left(rac{||\hat{f Q}-m Q||_2}{||m Q||_2}
ight)^2$$

Minimal value E = 0 corresponds to the perfect restoration of the sources time course.

The best result obtained with fMRI conditioned E/MEG inverse was chosen to be compared against L_2 -Fusion results.

Research

Problem Area

Simulations

Source Reconstruction Results

A Single Active Source

Empirical

Gaussian

EEG

Plan

Research

Problem Area

Simulations

Plan

Source Reconstruction Results

10 Spatially Overlapping Active Sources

Empirical

Gaussian

EEG

Research

Problem Area

Simulations

Summary

L₂ -Fusion Outperforms FMRI-DECD

- *L*₂ -Fusion is more noise-robust than FMRI-DECD
- L₂ -Fusion constantly outperforms FMRI-DECD on the large number of non-overlapping sources
- L₂ -Fusion performs as well as FMRI-DECD on overlapping sources in case of MEG and outperforms it with EEG
- FMRI-DECD on MEG data fails with increased number of sources
- Gaussian noise model is well suited for modeling of E/MEG instrumental noise

Introduction	Research ০০০০০০০০০০	Problem Area	Simulations	Plan
Summary: (Completed V	Work		

- An overview of the existing multimodal imaging approaches revealed advantages, drawbacks and difficulties associated with any particular method
- Two novel methods (L₁ and L₂ -Fusion) of multimodal analysis were suggested
- Neuroimaging problem to be tackled with multimodal methods was chosen
- The simulation environment for a somatotopic experiment was created to facilitate comparative performance analysis of different methods
- Simulated data was used to compare L₂ -Fusion with the conventional methods under different noise conditions and source arrangements

Research

Problem Area

Simulations

Plan

Proposed Work Timeline

Sep – Oct 2005

- Evaluate the quality of reconstruction achieved using L₁ -Fusion on the simulated dataset
- Apply proposed localization method to the simulated data to assess its performance
- Carry out a pilot fMRI/EEG experiment to verify applicability of the convolutional model for fMRI

Proposed Work Timeline: Continued

Nov – Dec 2005

- Analyze the trade-off between spatial and temporal resolution achieved by the proposed methods on simulated data
- Setup fMRI acquisition protocol to achieve reliable sub-mm spatial resolution over the region of interest
- Design somatotopic experiment based on resolution limits of the methods revealed by simulation studies

Research

Problem Area

Simulations

Plan

Proposed Work Timeline: Continued

31 Dec 2005 - 02 Jan 2006

Celebrate New Year

Jan – Mar 2006

- Collect fMRI and EEG data
- Perform the described analysis and draw conclusions
- Complete the dissertation

Research

Problem Area

Simulations

Plan

Do Not Forget to Shut Down the Lights

Thank you