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The Goal

General
Develop methods to achieve superior spatio-temporal resolution
by combining signals from different brain imaging modalities
that possess complementary temporal and spatial advantages.

Specific

Show that it is possible to obtain trustworthy estimate of
neuronal activity at superior spatio-temporal resolution by
combining EEG/MEG with fMRI data whenever forward models
of the signals are appropriate to describe the data in terms of
underlying neuronal processes.



Motivating Questions for Brain Scientists

Fundamental
How can we understand brain function?

Localization
Which areas of the brain are involved in the processing during a
specific task?

Brain dynamics

What are the interactions among the areas during a specific
task?



Motivating Questions for Engineers

Forward problem

How brain signals and stored information can be modeled to
produce registered measurements?

Inverse problem

How viable estimates of the neuronal processes inside the
brain can be obtained from a limited set of observations outside
the brain?

Signal processing

What characteristics (e.g. non-stationarity, statistical or
frequency features, etc.) of the brain imaging data should be
explored under heavy noise conditions?
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Non-Invasive Unimodal Brain Imaging

Electro- and Magnito- EncephaloGraphy

Common features
Passive technique

Post-synaptic ionic currents of synchronized pyramidal
neurons generate the electro-magnetic field registered by
E/MEG

Differences
EEG

On the head surface

Electric potential

Reference electrode

Silent to solenoidal
currents

MEG

Outside of the head

Magnetic field

Reference-free

Silent to radially oriented
currents
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Non-Invasive Unimodal Brain Imaging

E/MEG Brain Imaging

Linear formulation: DECD
Both magnetic and electric fields linearly depend on the current
strength at densely sampled fixed spatial locations

X = GQ

X (M×T ) – E/MEG data;
G (M×N) – spatial filter (lead-field/gain matrix);
Q (N×T ) – current strengths at each location

Easy!

For the linear case the solution is Q̂ = G+X
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Non-Invasive Unimodal Brain Imaging

Not That Easy: Inverse Problem
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Non-Invasive Unimodal Brain Imaging

Is That What You Had in Mind?
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Non-Invasive Unimodal Brain Imaging

Inverse Problem

Why it is problematic

Ill-posed: the number of possible signal source
locations (N) greatly exceeds the number of
sensors (M) – infinite number of solutions

Ill-conditioned: instrumental and brain noise prevents from
achieving stable solution by simply increasing
number of sensors
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Non-Invasive Unimodal Brain Imaging

E/MEG Inverse Regularization

Minimal 2-nd norm solution: pseudo-inverse

G† = G>(GG>)−1

Regularization: general formulation

G+ = WQG>(GWQG> + λWX)−1,

where W−1
X and W−1

Q are weighting matrices in sensor and
source spaces correspondingly
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Non-Invasive Unimodal Brain Imaging

E/MEG Pro et Contra

Pros: great temporal resolution

Great for any event related design

Epileptic spikes detection

Coherence analysis

Human brain interface

Cons: poor localization in space

Non-linear optimization in the case of dipole modeling

Inverse problem in the case of distributed dipole modeling
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Non-Invasive Unimodal Brain Imaging

fMRI: Blood Oxygenation Level Dependent

Pros
Great spatial resolution: 1 mm and higher

Safe: does not require injections of radioactive isotopes

Cons
Indirect measurement: BOLD response reflects oxygenation

Low temporal resolution:
Full volume can be acquired just every 2-4 seconds
BOLD signal itself is of convolved nature

Noise:
Inhomogeneities
Blood vessels influence
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Non-Invasive Unimodal Brain Imaging

Motivation for Multimodal Imaging

Superior spatial resolution of fMRI

Fine temporal resolution of E/MEG

Reported agreement between E/MEG and BOLD signals
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Existing Multimodal Techniques

Correlative analysis

Decomposition analysis

Constrained equivalent current dipole (ECD) modeling

FMRI-conditioned distributed ECD modeling

Beamforming with fMRI-conditioned covariance

Bayesian inference



Introduction Research Problem Area Simulations Plan

Multimodal Brain Imaging

Existing Multimodal Techniques

Correlative analysis

Decomposition analysis

Constrained equivalent current dipole (ECD) modeling

FMRI-conditioned distributed ECD modeling

Beamforming with fMRI-conditioned covariance

Bayesian inference



Introduction Research Problem Area Simulations Plan

Multimodal Brain Imaging

Problems

Absent generative model of BOLD signal

Variability of BOLD across subjects and within the brain

True neural signal is not known

Methods do not make use of temporal fMRI information
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Integration

Major Obstacle: Absent Generative BOLD Model

Linear Time Invariant System

f (t) = (h ∗ q)(t)

Hemodynamic Response Function

[Kalina Christoff, 2001]
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Integration

BOLD Signal: LTIS ( Convolutional ) Model

Observation
Convolutional model is valid in many cases

Convolutional model
provides good agreement between LFP and BOLD
response

permits the estimation of convolution kernel using simple
stimulus

has been used in most of the fMRI studies

can be augmented with non-linearity to accommodate
divergence from LTIS model
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Integration

Forward Models

Temporally and spatially superior modality Q (N×T ) is used to
reconstruct both F and X observed signals
Modality Data Matrix Size Model Description

E/MEG X M×T X̂ = GQ Spatial Filter
fMRI F N×U F̂ = Q̃B Temporal Filter

Dipole projections: q =
[
qxqyqz

]
Dipole strength: q̃jt =

√
q2

x it + q2
y it

+ q2
z it

Dipole orientation: Θjt = qjt/q̃it , where i = j mod N
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Integration

Forward Models

Temporally and spatially superior modality Q (N×T ) is used to
reconstruct both F and X observed signals
Modality Data Matrix Size Model Description

E/MEG X M×T X̂ = GQ Spatial Filter
fMRI F N×U F̂ = Q̃B Temporal Filter

Advantages

Modeling both E/MEG and fMRI makes use of temporal and
spatial information from both modalities

Reconstruction of fMRI along with E/MEG provides
regularization to the inverse E/MEG problem
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The Unknown: Dipole Strength ↔ BOLD

Scaling between dipole strength and BOLD signal is not known
and can vary from location to location

Solutions
Restrict range of applications to activations in small (thus
approximately homogeneous) regions

For the area of interest estimate scaling along with
convolution kernel using simple experimental design

Augment the model to include scaling parameter per each
local region
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Integration

Reconstruction Error

Residuals

∆X(Q) =
X̂(Q)− X√

νXMT
and ∆F(Q) =

F̂(Q)− F√
νFNU

Quality of the reconstruction criterion:

Er (Q) = ‖∆X(Q)‖l + α‖∆F(Q)‖l + λ C(Q)

where

l ∈ {1, 2}: the norm of error cost function

C(Q): additional regularization term
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Integration

l = 2: Gradient Descent Optimization

∂Er (Q)

∂Q
=

∂∆X(Q)

∂Q
+ α

∂∆F(Q)

∂Q
+ λ

∂ C(Q)

∂Q

∂∆X(Q)

∂Q
= 2GT (X −GQ) ,

∂∆F(Q)

∂Q
= 2Θ ?

(
(F− Q̃B)BT

)
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Integration

l = 2: Gradient Descent Optimization

∂Er (Q)

∂Q
=

∂∆X(Q)

∂Q
+ α

∂∆F(Q)

∂Q
+ λ

∂ C(Q)

∂Q

∂∆X(Q)

∂Q
= 2GT (X −GQ) ,

∂∆F(Q)

∂Q
= 2Θ ?

(
(F− Q̃B)BT

)

Advantages

Simple formulation

Efficient modifications of gradient descent can be used

Can easily incorporate other regularization terms
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Integration

l = 2: Gradient Descent Optimization

∂Er (Q)

∂Q
=

∂∆X(Q)

∂Q
+ α

∂∆F(Q)

∂Q
+ λ

∂ C(Q)

∂Q

∂∆X(Q)

∂Q
= 2GT (X −GQ) ,

∂∆F(Q)

∂Q
= 2Θ ?

(
(F− Q̃B)BT

)

Problems
Optimization can fall into local minima
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Linear Programming Formulation

Minimization task can be formulated as an LP problem

X̂ + ∆X = X Constraints

F̂ + ∆F = F

q̃ij ≥ 0 Region

E = ‖∆X‖1+ α‖∆F‖1 Objective
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Integration

Linear Programming Formulation

Minimization task can be formulated as an LP problem

X̂ + ∆X = X Constraints

F̂ + ∆F = F

q̃ij ≥ 0 Region

E = ‖∆X‖1+ α‖∆F‖1 Objective

Advantages

Sum of absolute errors found to be a much better criterion
in the case of present outliers

Side effect of LP formulation is the minimization of ‖Q‖1
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Integration

Linear Programming Formulation

Minimization task can be formulated as an LP problem

X̂ + ∆X = X Constraints

F̂ + ∆F = F

q̃ij ≥ 0 Region

E = ‖∆X‖1+ α‖∆F‖1 Objective

Problems
Efficient LP solvers are necessary due to the large size of
LP problem (MOSEK)

Possibly poor performance if noise is indeed Gaussian
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Localization

Classifier as a Localizer

Localization using classifiers

Temporal: trained classifier

Spatial: sensitivity map of the classifier

Advantages

Notion of generalization

Fast classification after the classifier has been trained

Disadvantages

Training can be lengthy

Might not generalize

Sensitivity map might reflect just a subset of activations
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Localization

Localization Using SVM

Great ability to generalize

Fast to train (constrained
quadratic problem)

Can easily work with data of
huge dimensionality

Sensitivity map of linear SVM
is given by the decision
hyper-plane normal

Results are consistent with
conventional analysis
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Somatotopy: Mapping of the Primary Motor (M1)

Simple motor response

Experiment is easily
reproducible

Coarse information about
spatial organization is
available

Temporal separation between
events is easily controllable
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M1 Mapping

Possible problems

Convolutional model might not be valid

Activations in other areas (PMA, SMA and PI) can interfere
with registration of the signal of interest

Suggested multimodal analysis methods may not produce
good estimates of neuronal activity

Solutions
Carry out a pilot experiment to verify applicability of the
convolutional model

Augment the model with non-linearity if necessary

Preprocess the data to extract signal components of
interest (ICA?, SOBI?)
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Artificial Data

Region of Interest: M1 “hand area”

(a) Cortical Mesh (b) 895 Surrounding 2 mm Voxels
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Artificial Data

Datasets

E/MEG sensors: 30 sensors (895 voxels)

Sampling rate: Sources (and E/MEG): 16 [Hz], fMRI: 1 [Hz]

Duration: Sources (and E/MEG): 1 [sec], fMRI: 10 [sec]

Noise: (1) Gaussian white and (2) empirical

Noise levels: ε = σε/ max(s) ∈ [ 0, 0.1, 0.2, 0.4, 0.6 ]

An activation: Modeled as a Gaussian (σ=50 [ms])

Trials: 30 trials

Arrangement: 5 datasets
Spatially non-overlapping:
[ 1, 10, 100, 895 ] active
Spatially overlapping: 10 randomly
activated locations followed by 2nd
activation within next 100–300 [ms]
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Multimodal Analysis Methods Compared

FMRI Conditioned E/MEG Inverse (FMRI-DECD)

Q̂ = G+X, where G+ = WQG>(GWQG>)−1

Conditioning of the inverse :
Truncated SVD of (GWQG>)

Gain matrix normalization :
WQ = Wn =

(
diag (G>G)

)−1

Relative fMRI weighting :
(WfMRI′)ii = ν0 + (1− ν0)∆i/∆max.
ν0 ∈ [ 1.0, 0.5, 0.1 ] which corresponds to
0, 50, and 90% of relative fMRI weighting

Dipole orientations :
Variable and Fixed
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Multimodal Analysis Methods Compared

L2 -Fusion

Q̂ = arg minQ ‖∆X(Q)‖2 + α‖∆F(Q)‖2

Trade-off Parameter :
α = [ 0.5, 1, 10] for a tradeoff between E/MEG and FMRI
fit was used
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Source Reconstruction Results

Reconstruction Quality Criterion

Relative noise energy brought into the source signal estimation

E =

(
||Q̂−Q||2
||Q||2

)2

Minimal value E = 0 corresponds to the perfect restoration of
the sources time course.

The best result obtained with fMRI conditioned E/MEG inverse
was chosen to be compared against L2 -Fusion results.
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Source Reconstruction Results

A Single Active Source
Empirical Gaussian
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Source Reconstruction Results

10 Active Sources
Empirical Gaussian
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Source Reconstruction Results

100 Active Sources
Empirical Gaussian
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Source Reconstruction Results

895 Active Sources
Empirical Gaussian
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Source Reconstruction Results

10 Spatially Overlapping Active Sources
Empirical Gaussian
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Summary

L2 -Fusion Outperforms FMRI-DECD

L2 -Fusion is more noise-robust than FMRI-DECD

L2 -Fusion constantly outperforms FMRI-DECD on the
large number of non-overlapping sources

L2 -Fusion performs as well as FMRI-DECD on overlapping
sources in case of MEG and outperforms it with EEG

FMRI-DECD on MEG data fails with increased number of
sources

Gaussian noise model is well suited for modeling of E/MEG
instrumental noise
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Summary: Completed Work

An overview of the existing multimodal imaging
approaches revealed advantages, drawbacks and
difficulties associated with any particular method

Two novel methods (L1 - and L2 -Fusion) of multimodal
analysis were suggested

Neuroimaging problem to be tackled with multimodal
methods was chosen

The simulation environment for a somatotopic experiment
was created to facilitate comparative performance analysis
of different methods

Simulated data was used to compare L2 -Fusion with the
conventional methods under different noise conditions and
source arrangements



Introduction Research Problem Area Simulations Plan

Proposed Work Timeline

Sep – Oct 2005
Evaluate the quality of reconstruction achieved using
L1 -Fusion on the simulated dataset
Apply proposed localization method to the simulated
data to assess its performance
Carry out a pilot fMRI/EEG experiment to verify
applicability of the convolutional model for fMRI
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Proposed Work Timeline: Continued

Nov – Dec 2005
Analyze the trade-off between spatial and temporal
resolution achieved by the proposed methods on
simulated data
Setup fMRI acquisition protocol to achieve reliable
sub-mm spatial resolution over the region of interest
Design somatotopic experiment based on resolution
limits of the methods revealed by simulation studies
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Proposed Work Timeline: Continued

31 Dec 2005 – 02 Jan 2006
Celebrate New Year

Jan – Mar 2006
Collect fMRI and EEG data
Perform the described analysis and draw conclusions
Complete the dissertation
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Do Not Forget to Shut Down the Lights

Thank you



Experiment

Somatotopy

Definition
Somatotopy The topographic association of positional
relationships of receptors in the body via respective nerve
fibres to their terminal distribution in specific functional areas of
the cerebral cortex.



Experiment

Requirements for a Benchmark Study

BOLD signal should be well described by convolutional
model

Experimental design has to be non-parametric

Activations have to be reproducible and stationary in time

There must be a possibility to control the spatial and
temporal distance between the activations



Experiment

Outline

6 Experimental Design and Data Preprocessing



Experiment

The Structure of a Brain Imaging Study

Choose a brain imaging problem

Design and setup an experiment

Acquire the data

Preprocess the data

Fusion: integrate imaging data from multiple modalities

Localize neuronal activity of interest
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Experiment

Specifics of the Experimental Design

“In Concert” multimodal data :
collect EEG and fMRI data in separate sessions on the
same subject and using identical experimental design.
Subject responses has to be recorded

Controlled spatio-temporal tradeoff :
explore different spatial and temporal distances
between the sources

Data corregistration :
3D digitization of fiducial points and their alignment
across the sessions

EEG data preprocessing :
ICA (or SOBI) analysis to extract components of interest
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