ABSTRACT

BOOSTED SPATIAL AND TEMPORAL PRECISION IN FUNCTIONAL BRAIN IMAGING
VIA MULTIMODAL ANALYSIS

by
Yaroslav Halchenko

Localizing neuronal activity in the brain, both in time amdspace, is a central challenge to progress il
understanding brain function. Non-invasive functionalibienaging has become an important tool usec
by neurophysiologists, cognitive psychologists, cogaitscientists, and other researchers interested
brain function. In the last five decades the technology ofinwasive functional imaging has flowered, and
researchers today can choose from EEG, MEG, PET, SPECT, MRIMRHO Each method has its own
strengths and weaknesses, and no single method is bestfauitddexperimental or clinical conditions.
EEG and MEG each provide data with high temporal resolutioea@uared in milliseconds), but limited
spatial resolution. In contrast, fMRI provides good spdiistirelatively poor temporal resolution.

Because of the inadequacies of individual techniques, tkénereased interest in finding ways to
combine existing techniques in order to synthesize thegths inherent in each. Number of techniques
refining EEG and MEG analysis by exploring the data from MR alibés (MRI, fMRI) has been
developed in order to increase localizatiprecision Demonstrated localizatioaccuracyremains a
distant goal confounded by the lack of ground truth in anyisgéa experimental multimodal protocol and
the lack of a complete model of the BOLD signal.

The goal of this dissertation is to show that it is possibl®ltain reliable estimates of neuronal
activity at superior spatio-temporal resolution by conmgrEEG/MEG with fMRI data whenever forward
models of the signals are appropriate to describe the dagais of underlying neuronal processes. The
proposal surveys various aspects of uni- and multimodagjingg discusses obstacles confronted with or
the way to reliable multimodal methods, proposes novel@ggres for multimodal imaging, describes a
chosen neuroimaging problem to persuade with the suggestdtds, and, finally, presents preliminary

results on the simulated data.

BOOSTED SPATIAL AND TEMPORAL PRECISION IN FUNCTIONAL BRAIN IMAGING
VIA MULTIMODAL ANALYSIS

by
Yaroslav Halchenko

A Dissertation Proposal
Presented to the Faculty of
New Jersey Institute of Technology and
Rutgers, The State University of New Jersey — Newark
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Computer Science

Department of Computer Science

September 2005



Copyright(© 2005 by Yaroslav Halchenko
ALL RIGHTS RESERVED

APPROVAL PAGE

BOOSTED SPATIAL AND TEMPORAL PRECISION IN FUNCTIONAL BRAIN IMAGING
VIA MULTIMODAL ANALYSIS

Yaroslav Halchenko

Dr. Jason T. L. Wang, Dissertation Advisor Date
Professor, Computer Science Department, NJIT

Dr. Stephen J. Hanson, Committee Member Date
Professor and Chair of Psychology Department, Rutgers-Newark

Dr. Eliza Michalopoulou, Committee Member Date
Associate Professor, Mathematical Sciences and ElecamchComputer Engineering Departments,
NJIT

Dr. David Nassimi, Committee Member Date
Associate Professor, Computer Science Department, NJIT

Dr. Chengjun Liu, Committee Member Date
Assistant Professor, Computer Science Department, NJIT



BIOGRAPHICAL SKETCH

Author: Yaroslav Halchenko
Date: September 2005

Date of Birth: August 13, 1977

Place of Birth: Omsk, Russian Federation

Undergraduate and Graduate Education:

e Master of Science in Computer Science,
University of New Mexico, Albuquerque, NM, USA, 2002

e Master of Science in Laser and Optoelectronic Engineering,
Vinnytsya State University, Vinnytsya, Ukraine, 1999

e Bachelor's Degree in Laser and Optoelectronic Engineering,
Vinnytsya State University, Vinnytsya, Ukraine, 1998

Major: Computer Science

Presentations and Publications:

[1] Yaroslav O. Halchenko, Stephen &ddanson, and Barak A. Pearlmuttédvanced Image Processing in
Magnetic Resonance Imaginchapter Multimodal Integration: fMRI, MRI, EEG, MEG. Dekker,()
In Press.

[2] Stephen Jas Hanson, T. Matsuka, C. Hanson, D. Rebbechi, Yaroslav O. Halchénk@aimi, and
Barak A. Pearlmutter. Structural equation modeling of neunegjing data: Exhaustive search and
markov chain monte carlo. IHuman Brain Mapping2004.

[3] Yaroslav O. Halchenko, Stephen &oblanson, and Barak A. Pearlmutter. Fusion of functional brai
imaging modalities using I-norms signal reconstructiom Ptoceedings of the Annual Meeting of the
Cognitive Neuroscience Socig8an Francisco, CA, 2004.

[4] Yaroslav O. Halchenko, Barak A. Pearimutter, Stepheg dtenson, and Adi Zaimi. Fusion of functional
brain imaging modalities via linear programmirgiomedizinische Technik (Biomedical Engineering)
48(2):102-104, 2004.

[5] Leonid I. Timchenko, Yuri F. Kutaev, Alexander A. Gertsiyanslav O. Halchenko, Lubov V. Zahoruiko,
and Tamer Mansur. Method for image coordinate definition xtereded laser paths. volume 4148,
pages 19-26. SPIE, 2000.

[6] Leonid I. Timchenko, Yuri F. Kutaev, Alexander A. Gertsiyyhov V. Zahoruiko, Yaroslav O. Halchenko,
and Tamer Mansur. Approach to parallel-hierarchical netvearning for real-time image sequence
recognition. volume 3836, pages 71-81. SPIE, 1999.

[7] Leonid I. Timchenko, A. A. Gertsiy, L. V. Zahoruiko, Y. F. Kag¢v, and Yaroslav O. Halchenko.
Pre-processing of extended laser path imagemdustrial Lasers and Inspection: Diagnostic Imaging
Technologies and Industrial Application$lunich, Germany, June 1999. EOS/SPIE Internationz
Symposium. [3827-26].

[8] Leonid I. Tymchenko, Janina Scorukova, Serhij Markawd &aroslav O. Halchenko. Image segmentatior
on the basis of spatial connected featuresVigmyk VSTUvolume 4, pages 39-43. VSTU University
Press, Vinnytsya, Ukraine, 1998. in Ukrainian.

[9] T. B. Martinyuk, A. V. Kogemiako, and Yaroslav O. HalchenkoheTmodel of associative processor for
numerical data sorting. IRisnyk VSTUvolume 2, pages 19-23. VSTU University Press, Vinnytsye
Ukraine, 1997. in Ukrainian.

[10] Leonid I. Tymchenko, Janina Scorukova, Jurij KutaeH§j Markov, Tatiana Martynuk, and Yaroslav O.
Halchenko. Method spatial connected segmentation of im&ig@&se Third All-Ukrainian International
Conference Ukrobraijiv, Ukraine, November 1996. in Ukrainian.



LIST OF SYMBOLS

Abbreviations

Abbreviation Meaning

BEM
BMA
BOLD
DC
DECD
ECD
EEG
EIT
EMF
EMEG
EM
EMSI
EPI
ERF
ERP
FDM
FEM
FMRI
HR
HRF
ICA
LCMV
LP
LTIS
MAP
MCMC
MEG
MR
MRI
NIRS
NMR
PCA
PD
PDF
PET
PLS
ROI
SNR
SOBI
SPECT
SQUID

Boundary Elements Method

NOTATION AND TERMINOLOGY
(Continued)

Symbols

. h Symbol Meaning
Bayesian Model Averaging K Number of simultaneously active voxels
Blood Oxygenation Level Dependent N Number of voxelsi.e. spatial resolution of high spatial resolution modality )
Direct Current M Number of EEG/MEG sensorise. spatial resolution of low spatial resolution modality
Distributed ECD T Number of time points of high temporal resolution modalitfE@E MEG)
Equivalent Current Dipole U Number of time points of low temporal resolution modality ()
ElectroEncephaloGraphy L Number of orthogonal axes for dipole moment componefts, {1, 2, 3}
Electrical Impedance Tomography I, Identity matrix g2 xn)
ElectroMotive Force 0 Zero matrix of appropriate dimensionality
EEG andfor MEG X GeneraEIMEG data matrix; can contain EEG or/and MEG dataxT)
Expectation Ma_mmlzatlon _ F BOLD fMRI data matrix (V xU)
Eler(]:troll\llagnetlc Source Imaging Q General dipole sources matrix {/ x 7))
Et\:/eﬁtPRaerI];relc'inI?igllgg Q Dipole sources strength matrid/( T
. €] Dipole sources orientation matrix.(Vx7T’)
Event Related Potential X . i-th column ofX
Finite Difference Method X;” i-th row of X
I':::Jnrllt(:etigrlliTGrFIQtIS Method G GeneraEIMEG lead function, incorporating information for EEG or/aW&G
Hemodynamic Response G GeneraBEIMEG lead matrix
. F Spatial filter matrix for the-th dipole (M x L)
HR Function v Variance
Independent Component Analysis Deviation
Linearly Constrained Minimum Variance (é Covariance matrix
L}near F’_rogramm'lng K Matrix of correlation coefficients
Linear Time Invariant System
Maximum a Posteriori
Monte Carlo Markov Chain Eunctions
MagnetoEncephaloGraphy Symbol Meaning
Magnetic Resonance v Matrix transpose
MR Imaging M+ Generalized matrix inverse (pseudo-inverse)
Near-infrared Spectroscopy nullM  Thenull spaceof M, the set of vector$x | Mx = 0}
Nuclear Magnetic Resonance diag M  The diagonal matrix with the same diagonal elementsias
Principal Component Analysis sign(z) Sign ofz: —1 for negative values, otherwise
Proton Density Imaging apB ...
Probability Density Function ® Kronecker productA @ B = ) }
Positron Emission Tomography ’

Partial Least-Squares

Region of Interest
Signal-to-Noise Ratio

Second Order Blind Identification

Single Photon Emission Computed Tomography
Superconducting QUantum Interference Device

Vi vii



TABLE OF CONTENTS

Chapter Page
1 UNIMODAL SOURCE LOCALIZATION . . . . . . ... 6
1.1 EEGand MEG: Specifics. . . . . . . . . ... 6
1.2 Forward Modeling. . . . . . . . ... 10
1.3 Thelnverse Problem . . . . . . . .. . .. 12
1.3.1 Equivalent CurrentDipole Models. . . . . ... ... ... ... ... .... 12

1.3.2 Linear Inverse Methods: Distributed ECD. . . . . .. ... ... ... .... 13

1.3.3 Beamforming . . . . . . . . ... 16

2 MULTIMODAL EXPERIMENT PRACTICES . . . . . . . . . .. .. 19
2.1 Measuring EEG During MRI: Challenges and Approaches . . . . . . ... ... .. 19
2.2 Experimental Design Limitations. . . . . . . ... ... ... oL 20

3 CONVENTIONAL MULTIMODAL ANALYSIS . . . . . .. ... . oo o . 24
3.1 UsingAnatomical MRI . . . . . . . ... 24
3.1.1 Registrationof EEGand MEGtoMRI. . . . . ... ... ... ... ... . 24

3.1.2 Segmentation and Tessellation . . . . .. ... .. ... ... ... . ... 26

3.1.3 Forward Modelingof EEGandMEG. . . . . ... ... ... ... ...... 26

3.2 Forward Modelingof BOLD Signal. . . . . . . ... ... .. ... .. .. .. .. .. 27
3.2.1 Convolutional Model of BOLD Signal . . . . . . . . ... ... ... ..... 28

3.2.2 Neurophysiologic Constraints . . . . . . . . . . ... ... ... ... ... . 29

3.3 AnalysisMethods. . . . . . ... .. 31
3.3.1 Correlative Analysis of EEG and MEG withfMRI. . . . . .. ... ... ... 32

3.3.2 Decomposition Techniques. . . . . . . .. . ... ... ... ... 33

3.3.3 Equivalent Current Dipole Models. . . . . .. ... ... ... ... ..... 34

3.3.4 Linearinverse Methods. . . . . . .. ... ... Lo L 35

3.3.5 Beamforming . . . . . . . ... 37

3.3.6 BayesianiInference. . . . . . . . ... ... 37

4 MOTIVATIONS FOR FURTHER DEVELOPMENT OF MULTIMODAL METHODS . . . . 41
4.1 Alternative Waysto Explore . . . . . . ... .. ... 41
4.2 “TheChallenge”. . . . . . . . . . 42

TABLE OF CONTENTS
(Continued)

Chapter Page
5 MULTIMODAL IMAGING USING L-NORMS SIGNAL RECONSTRUCTION. . . . . . .. 46
5.1 Generalized Problem Formulation. . . . . . ... ... ... . 0 L. 46
5.1.1 Forward Models. . . . . . .. . ... 46
5.1.2 Objective Function . . . . . . . . . ... 46
5.2 L, Error, Variable Orientation — GradientDescent . . . . . .. ... ... ... ... 47
5.3 L, Error, Fixed Orientation. . . . . . . ... . .. ... ... ... .. .. ... 47
5.4 L, Error Minimization - LP Minimization. . . . . . . .. ... ... ... ... .... 48
55 Remarks. . . . . .. 50
6 MULTIMODAL IMAGING: SIMULATION STUDY . . . . . ... . .. ... ... .. 51
6.1 Simulated Dataset Generation. . . . . . . .. .. ... o 51
6.1.1 Forward Modeling. . . . . . . ... ... ... 51
6.1.2 Additive Noise. . . . . . . .. ... 53
6.1.3 Simulation Protocol. . . . .. ... ... 53
6.1.4 Algorithms Tested. . . . . . . . . . ... . ... ... 55
6.1.5 Results. . . . .. .. 56
7 FURTHERRESEARCH . . . . . . e 63

APPENDIXA FREE SOFTWARE GERMANE TO MULTIMODAL ANALYSIS OF
EEG/MEG/FMRIDATA. . . . . . 65
APPENDIXB CANONICALFORMFORLP. . . . . ... ... ... ... . ... .... 66
B.1 Absolute Value. . . . . . . ... . 66
B.2 MinimalValue . . . . . .. .. .. 66
APPENDIXC 3D RIGID TRANSFORMATION VIA QUATERNIONS. . . . . ... ... .. 68

APPENDIXD DATA PREPROCESSING TO OBTAIN EMPIRICAL NOISE SAMPLES. . . 69



LIST OF FIGURES

Figure

1 Non-invasive functional brainimaging . . . . . . .. .. ... ... L.
1.1 Theinternational 10-20 EEG system. . . . . . . . . . . ... ...
1.2 TypicalEEGwaves. . . . . . . . .
2.1 EEG MR artifactremoval usingPCA . . . . . . . . . . ...
3.1 Geometrical interpretation of subspace regularizatisthe MEG/EEG source space . . .
4.1 Brainimaging challenge: somatotopy mapping . . . . . . . . ... ... ...
6.1 MRI of the subject used for the simulated dataset. . . . . .. .. ... ... ... ...
6.2 Tessellated brain volume with EEG and MEG electrodeditmts. . . . . ... ... ...
6.3 Region of interest - central sulcus and adjacentgyri . . . . .. .. ... ... ... ..
6.4 Regionofinterest: “handarea” . . . . . . . . . . . . ...
6.5 Dataset NONOVERLAPL: Solutions comparison. . . . . ... .. .. ... ......
6.6 Dataset NONOVERLAP10: Solutions comparison . . . . . . . ... ... ... ....
6.7 Dataset NONOVERLAP100: Solutions comparison. . . . . ... ... ... ......
6.8 Dataset NONOVERLAP895: Solutions comparison. . . . . .. ... ... .......
6.9 Dataset OVERLAP10: Solutions comparison . . . . . .. ... ... ... .......
D.1 RawEEGsignalduringrestperiod. . . . . . . .. .. ... ... ... ...
D.2 EEGsignalfiltered. . . . . . . . . .
D.3 ICAcomponentsofthe EEGsignal. . . . . ... ... ... .. L.
D.4 ICA components of the EEG signal. Spatialmaps. . . . . ... ... ... ... ....
D.5 Normed multichannel EEG empirical noise . . . . . . . . ... ... ... ... ....
D.6 Normed EEG empirical noise statistics. . . . . . ... ... ... ... .........

D.7 Power spectrum of the empirical noise. . . . . . . . ... ... ..

21

62

INTRODUCTION

A great challenge in any research of brain functioning is &wehnon-invasive means to asses the
characteristics of neuro-physiological processes inidérain at a fine temporal and spatial resolution
Miscellaneous assumptions of the nature of neuronal sSdge&lneuronal activity to be measured and
modeled as biomedical signals which can be registered byadypes of non-invasive brain imaging
techniques such as electroencephalography (EEG), magieefaealography (MEG), nuclear magnetic
resonance (NMR) imaging (MR3) positron emission tomography (PET), near-infrared spscopy
(NIRS), and others.

All of the mentioned modalities could be brought into two gatées: passive and active. Passive
methods (EEG and MEG) try to register changes in the ambievitoement which are caused by
neuronal processes inside the brain. Active methods (suMRASPET and NIRS) create a controllable
environment which changes under underlying neuronal andsilggsother related physiological
processes. Therefore most of the time they do not captunétses neuronal activity directly, but rather
register changes caused byétg. consumption of the contrast agents, blood oxygenation angé of
blood flow. Captured brain signals by either passive or aatielalities are usually non-stationary
signals distorted by noise and interferences. Moreovey fhessess characteristics specific to the
technique (modality) used to acquire it, so it is crucial &wdr a clear understanding of their nature tc
perform advanced signal analysis.

EEG has been widely used in research and clinical studies 8iranid-twentieth century. Although
Richard Caton (1842-1926) is believed to have been the firstctord the spontaneous electrical activity
of the brain, the term EEG first appeared in 1929 when Hans Beagesychiatrist working in Jena,
Germany, announced to the world that “it was possible to cetloe feeble electric currents generatec
on the brain, without opening the skull, and to depict thenplieally onto a strip of paper.” The first
SQUID-based MEG experiment with a human subject was conductdtiTaby Cohen [31] after his
successful application of Zimmerman’s SQUID sensors to iae@umagneto-cardiogram in 1969. EEG
and MEG are closely related due to electro-magnetic cogpkmd termEMEG will be used to refer

generically to either EEG, MEG, or both altogether. AlthoughGE&nd MEG are related, there are

1From WordNet (r) 2.0 (August 2003) [wn]: noninvasive adj : relating to a technique that does not involve punctu
the skin or entering a body cavity [ant: invasive]
2The term MRI generally substituted NMR so that the public could more easily adopt a term for an imaging mod

without the word "nuclear” in it
1
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some subtle differences which will be outlined further in thrtt BothEEMEG provide high temporal
resolution (measured in milliseconds) but have a majortéitiun: the location of neuronal activity can
be hard to pin-point with confidence. That is because such litiedaacquire data which is created as
a super-imposition of electromagnetic fields outside offtead which were caused by the brain signals
therefore in order to obtain characteristics of the oripireuronal activations the inverse problem has tc
be solved. Localization of neural activity frofMEG data is usually called adectromagnetic source

imaging(EMSI) and has been a challenging area of research for thedaple decades.

EEG MEG MRI

il
W‘ﬁ‘vhlf\‘(b
A
(I

Figure 1 Non-invasive functional brain imaging equipment: from siemgEG to expensive MRa.
Equipmenth. Typical Data

Opposed t&/MEG, MRI modality has a natural capability to proviievivo view on brain structure
and function. Nuclear Magnetic Resonance (NMR) was indepelydéiscovered by Felix Bloch and
Edward Purcell in 1946, so they both received a Nobel Prizéwysies in 1952. Only in 1970, Raymond
Damidian discovered that the structure and abundance ofrwatbe human body is the key to MR

imaging (MRI). It was Paul Lauterbur in 1973, however, who impéated the concept of tri-plane

3

gradients used for exciting selective areas of the body (Gx,a8¢ Gz). P. Lauterbur along with Peter
Mansfield were awarded a Nobel Prize in Physiology or Medigir2003 for the invention of MRI, which
made a huge impact on medical imaging.

Since the invention time, MRI techniques evolved. Nowadayagenintensity observed in MR
images can be determined by various tissue contrast merhsrguch as proton density, T1 and T2
relaxation rates, diffusive processes of proton spin deiphaloss of proton phase coherence due to tisst
magnetic susceptibility variations. Although MRI is capabfedetecting transient or subtle changes in
the magnetic field in the cortical tissue caused by neurastalaion [19, 196], direct application of MRI
to capture functional activity remains limited due to a vl signal-to-noise ratio (SNR) which is why
MRI is often labellecanatomical Its applicability for functional studies was not reveafeda while.

It was toward the end of the 19th century, when Charles Roy andé3Haerrington [151] provided
the first evidence supporting the connection between neleatigity and cerebral blood flow. In 100
years, after MRI technique had received much of apprecidtioanatomical studies, Ogawa et al. [136]
showed that MRI can reflect blood deoxygenation usingc@@trast. Such finding laid down a framework
for functional brain imaging using MRI [17, 137, 150] by cagtg blood oxygenation level-dependent
(BOLD) signal without necessity to use any reactive agents, rtralsng functional MRI (fMRI) the first
truly non-invasive functional brain imaging modality whibtlears rich spatial information. Due to the
deliberateness of the hemodynamics in comparison to theonaluactivation time course, BOLD fMRI

time resolution is coarse but acceptable for many typesudfies.

Problem Statement

Any single technology mentioned above is yet to become thiedbesce for all functional brain imaging
necessities. High temporal resolutionE¥1EG modalities is crucial in many event-related experiment
and it cannot be achieved using BOLD fMRI, which delivers supespatial resolution, which, in turn,
cannot be reliably achieved usiBVEG. Therefore it is beneficial to have methodology that cadats
the information obtained from different brain imaging mbiilss. Such information integration is hoped
to provide consistent and reliable localization of the oeat activity with higher spatial and temporal
precision that cannot be achieved using any of the existiodatities alone.

The main obstacle in the development of multimodal methogslving fMRI nowadays seems

to be the absence of a universal model for hemodynamics, vthereeuronal activation is the primary
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input factor. Simplistic models can be used in particulatances of multimodal analysis where they are
supported by the empirical evidence from simple experisent

Due to the difficulties in assessing ground truth of a combaigdal in any realistic experiment—a
difficulty further confounded by lack of accurate biophydimodels of BOLD signal, any fusion problem
has to be tackled with caution. Reported progress on simpleriempnts where there is a small number
of isolated focal sources of activity which are consisteptlysent in all relevant modalities, and phantorr
studies can already provide basic test-ground to checkaligity of the developed fusion methods.

To summarize, now it seems to be the right time for the devetp of fusion methods which are
comprising empirically supported models or are flexibleiggioto incorporate future elaborated models
of the BOLD response. A convincing demonstration of increassuliracy using multimodal integration

for a complex protocol would constitute a major successaérfitid.

Objectives and Scope of the Work

The current work addresses the problem stated: developamehtalidation of a multimodal functional
brain imaging technique to gain intrinsic advantages ohas&ed modality. Brain imaging experiment
(motor somatotopy) is chosen to comply with the requiremdatsmultimodal analysis which is
formalized in the thesis. In the present work few differenéams to perform multidimensional
regression to merge signals froMEG and fMRI are approached (non-linear optimization, Linea
Programming, Sylvester equation solvers). Further, ticbrieal and methodological difficulties of
fusing heterogeneous signals are highlighted and expldkethe end, the hope is thabrrect fusionof
multimodal data will allow previously inaccessible spatioporal structures to be visualized and

formalized and thus eventually become a useful tool in biraamging research.

Organization
Due to the fact, that source localization techniques usediSIEerved as a starting point for subsequen
multimodal analysis, the initial focus concerns reviewingthematical approaches for solving the
localization problem inEMEG. Thus, Chapter 1 highlights popular methods, formulatemmaal
problems of EMEG source localization, and describes how they have beeckad by various

researchers.

5

In order to obtain multimodal data, is it important to keeprimd obstacles on the way to perform
truly multimodal experiment. Chapter 2 addresses the pnobl@/hich are inherent in concurrent
multimodal experiments due to the interference betweerabsigrquisition technologies used fMEG
and MRI.

Chapter 3 covers existing brain imaging techniques which eynpiultiple modalities. The review
starts with the description of benefits achieved by usingamiaal MR modalities which do not carry
any functional (temporal) information but neverthelessc@l in the fusion process due to their high
spatial resolution. In particular, it is discussed how amatal MRI can be combined with existing EMSI
techniques in order to increase the localizatwacisionwithout introducing any additional functional
information. Then, the most recent and promising ways in wihese signals can be combined with
fMRI are documented. Specifically, attention is paid to datiee analysis, decomposition techniques,
equivalent dipole fitting, distributed sources modelingaimforming, and Bayesian methods.

Limited knowledge of BOLD fMRI signal restricts the set of bramaging experiments which can
be successfully and reliably analyzed using multimodalhmés. Chapter 4 motivates and presents th
choice of suitable brain imaging experiment, which is sutgge® be used as a validation of the introducec
multimodal methods, which are presented in Chapter 5. Towefdusibility of the new suggested
methods, they are probated on the simulated data with knowadesistics. Chapter 6 overviews details
of the simulated dataset generation and discusses anagsits using new and some existing multimoda
imaging methods.

Finally, Chapter 7 gives a brief conclusion and drafts a plafuture research to further support
the thesis and complete this dissertation. Throughout tAeuscript a consistent and complete set o
mathematical formulations that are stand alone is provitiegkether with appropriate context for this

notation into existing literature.



CHAPTER 1

UNIMODAL SOURCE LOCALIZATION

The goal of physicists is to find a use for every branch of
mathematics. The goal of mathematicians is to invent a new

field of mathematics that has absolutely no practical use

— Unknown Professor
fMRI became a very popular tool for brain imaging due to itshhégatial resolution. A vast amount

of methods has been developed to achieve reliable spatalization of neuronal activity, or to be exact,
of its secondary effects such as blood flow (perfusion) oigexwation (see [98] for the review of existing
methods). In turnEMEG signals have no definite solution to gain reliable spédizlization. Therefore
following section covers the specifics@MEG signals, the premises for conjo1EG analysis, and the

EMSI techniques which have been adopted later for use in madtal analysis with fMRI data.

1.1 EEG and MEG: Specifics
The theory of electromagnetism and Maxwell’'s equations,euride assumption of quasi-stationatijty
theoretically defines the relationship between observechetagand electric fields induced by the ionic
currents generated inside the brain (see [113, 127, 138hfoe information about the biophysics of
EMEG signals).

The similar nature of the EEG and MEG signals means that masthods of data analysis are
applicable to bothEMEG modalities. Although the SNR dMEG signals have improved with
technological advances, and some basic analysis has bfempad by experts on raWMEG data via
visual inspection of spatial signal patterns outside oftiteén, more advanced methods are required ti
use data efficiently. During the last two decades nfal\EG signal analysis techniques [121] have beel
developed in order to provide insights on different levélperceptual and cognitive processing of humar
brain: ERP (event related potential) in EEG and ERF (eventaglfield) in MEG, components analysis
(PCA, ICA, etc), frequency domain analysis, pattern analysis, and sitngleanalysis to name the few

[83, 173, 175]etc. Source localization techniques were first developed for MEGabse the head model

1A signal is quasistatic if it does not change its parameters in time. The non-stationary term preseRtNtEBe
physical model is relatively small and can be considered zero in the range of signal frequericleane captured
by EMEG. See [64] for a more detailed description. 6
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required for forward modeling of magnetic field is relativsimple. Source localization using an EEG
signal has been difficult to perform since the forward praiam of the electric potentials is more
complicated. However, recent advances in automatic MRI seti@m methods together with advances
in forward and inverse EEG modeling, have made EEG souredization plausible.

The theory of electromagnetism also explains why EEG and MigBats can be considered
complementary, in that they provide different views on oftee same physiological phenomenon
[32, 64, 113, 194]. On one hand, often accented differendeatsMEG is not capable of registering the
magnetic field generated by the sources that are orientedllyatb the skull surface in the case of
spherical conductor geometry. On the other hand, MEG hasdhenéage over EEG in that the local
variations in conductivity of different brain matteg.g¢. white matter, gray matter) do not attenuate the
MEG signal much, whereas the EEG signal is strongly influerigethe variations in conductivities of
different types of brain matter and of the skull in partiele38]. The orientation selectivity, combined
with the higher depth precision due to homogeneity, make MB@al for detecting activity in sulci
(brain fissures) rather than in gyri (brain ridges). In castya registered EEG signal is dominated by th¢
gyral sources close to the skull and therefore more radids$ tsurface. Yet another crucial difference is
dictated by basic physics. The orthogonality of magnet@t electrical fields leads to orthogonal maps of
the magnetic field and electrical potential on the scalpaserf This orthogonality means that an
orthogonal localization direction is the best localizatidirection for both modalities [32, 114]. These
complementary features of the EEG and MEG signals are whate ntfaém good candidates for
integration [12, 38]. The conjoiffMEG analysis has improved the fidelity of EMSI localizatioat bas
not entirely solved the problem of source localization agoliy. It is the reduction of this remaining
ambiguity where information from other brain imaging motlei may play a valuable role.

It is worth noting another purely technical advantage of Mi&@r EEG: MEG provides a reference-
free recording of the actual magnetic field. Whenever EEG@sreapture scalp potentials, a reference
electrode must be used as a ground to derive the signal oéstteA reference signal chosen in such a way
can be arbitrarily biased relative to the EEG signal obskexen when no neuronal sources are active
The unknown in an MEG signal obtained using SQUID sensorsstsgjeonstant in time offset—the DC
baseline. This baseline depends on the nearest flux quaotunhich the flux-locked loop acquired lock
[187, pg. 265]. Although the choice of a reference value in EBG the DC line in MEG do not influence

the analysis of potential/field topographic maps, they dgeiat inverse solution algorithms which assume
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Figure 1.2 From the EEG signal it is possible to differentiate alphalfa}a (b), delta (d), and theta (Q)
waves as well as spikes associated with epilepsy. (Borrowed withipsion from [113])

Figure 1.1 The international 10-20 EEG system seen from (A) left and (B)valthe head. A = Ear

lobe, C = central, Pg = nasopharyngeal, P = parietal, F =dipip = frontal polar, O = occipital.

(C) Location and nomenclature of the intermediate 10% ealdes, as standardized by the Americar

Electroencephalographic Society. (Borrowed with permisgiom [113])
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zero net source in the heda. zero baseline. In general, the simple average referenossitre electrodes
is used and it has been shown to be a good approximation tautneeference signal [121, sec. 2.2].

Even if the reference value (baseline) is chosen correotlih conventional EEG and MEG face
obstacles in measuring the slowly changing DC component ofidyeal in the low frequency range
(f < 0.1Hz). In the case of EEG the problem is due to the often used auypl the electrodes via
capacitors, so that any DC component (slowly changing biashefEEG signal is filtered out. That
leaves the researcher with non-zero frequency componete afignal, which often correspond to the
most informative part of the signal as in the case of coneenaliERP or frequency domain analysis. The
DC-EEG component can be registered by using sensors with dsepting and special scalp electrodes
that are gel filled to eliminate changes of electrical impedaat the electrode-skin interface which
can cause low frequency noise in the EEG signal. Although tE#&NMystem does not require direct
contact between sensors and skin, it is nevertheless subjé¢tf sensor noise which interferes with
the measurement of the neuronal DC fields. In the last decade BG-Mas been methodically refined
by employing controlled brain-to-sensor modulation allegvthe monitoring of low-frequency magnetic
fields. Formalized DGIMEG techniques make it possible to perfoffREG studies, which rely on the
shift of DC and low frequency components of the signal; conepds that occur, for example, during

epileptic seizures, hyperventilation, changes in vigistates, cognitive or motor tasks.

1.2 Forward Modeling

The analysis oEIMEG signals often relies on the solution of two related protdeTheforward problem
concerns the calculation of scalp potentials (EEG) or magrieids near the scalp (MEG) given the
neuronal currents in the brain, whereas ieerse probleninvolves estimating neuronal currents from
the observed/MEG data. The difficulty of solving the forward problem is refed in the diversity of
approaches that have been tried (see [125] for an overvidwiaified analysis of different methods).

The basic question posed by both the inverse and forwardeamshis how to model any neuronal
activation so that the source of the electromagnetic fietdbeamapped onto the obserni@HEG signal.
Assuming that localized and synchronized primary currengstize generators of the obsen@MEG
signals, the most successful approach is to modet-thesource with a simple Equivalent Current Dipole
(ECD) q; [24], uniquely defined by three factors: location represérty the vector;, strengthg;, and

orientation coefficient®;. The orientation coefficient is defined by projections of tleetor q; into
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L orthogonal Cartesian axe#; = q;/¢;. However, the orientation coefficient may be expressed b
projections in two axes in the case of a MEG spherical modetevie silent radial to the skull component
has been removed, or even, just in a single axis if normaith¢ cortical surface is assumed. The ECC
model made it possible to derive a tractable physical mad&ing neuronal activation and observed
EIMEG signals. In case ok simultaneously active sources at tirhéhe observed/MEG signal at the

sensorx; positioned ap; can be modeled as
K
X;(ri, qi,t) = Zg(rlz(t)ep_i) qi(t) +e (1.1)

whereg is alead fieldfunction which relates théth dipole and the potential (EEG) or magnetic field
(MEG) observed at thg-th sensor; andis the sensor noise. In the given formulation, functign; (¢), p;)
returns a vector, where each element corresponds to the dedficient at the locatiop; generated by
a unit-strength dipole at positian(¢) with the same orientation as the corresponding projectiis @fx
;. The inner-product between the returned vector and dipmegth projections on the same coordinate
axes yields g-th sensor the measurement generated by-thelipole.

The forward model (1.1) can be solved at substantial contiput expense using available
numerical methods [147] in combination with realistic stuwal information obtained from the MRI data
(see Section 3.1). This high computational cost is accéptalhen the forward model has to be
computed once per subject and for a fixed number of dipolditots but it can be prohibitive for dipole
fitting, which requires a recomputation of the forward modeldach step of non-linear optimization. For
this reason, rough approximations of the head geometry tanctsre are often usedt.g. best-fit single
sphere model which has a direct analytical solution [199herrhultiple spheres model to accommodate
for the difference in conductivity parameters across thffé tissues. Recently proposed MEG forward
modeling methods for realistic isotropic volume condusfdi32, 133] are more accurate and faster thal
BEM, and hence may be useful substitutes for both crude acalymnethods and computationally
intensive finite-element numeric approximations. Gengrdle solution of the forward problem is

crucial for performing source localization usiBylEG, which is the main topic of the next section.
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1.3 The Inverse Problem
1.3.1 Equivalent Current Dipole Models
TheEIMEG inverse problem is very challenging (see [13, 64] for agraiew of methods.) First, it relies
on the solution of the forward problem, which can be compoitetily expensive, especially in the case
of realistic head modeling. Second, the lead-field functiofiom (1.1) is non-linear in;, so that the
forward model depends non-linearly on the locations ofvatitins. It is because of this nonlinearity that
the inverse problem is generally treated by non-lineamoigétion methods, which can lead to solutions
being trapped in local minima. In case of Gaussian sensoenibis best estimator for the reconstruction
quality of the signal is the squared error between the obdeaimel modele/MEG data:

K ta M

Era) = D3> (x(1) = %y(ri, ai,1))” + AC(r, @), (12)

i ot=t; j

whereC(r, q) > 0 is often introduced to regularize the solutidm, to obtain the desired features of the
estimated signak(g.smoothness in time, or in space, lowest energy or dispersaod)\ > 0 is used to
vary the trade-off between the goodness of fit and the regaléwn term.

This least-squares model can be applied to the individoa-points {; = ¢,) (“moving dipole”
model) or to a block# < t,) of data points. If the sources are assumed not to changegdilné block
(t1.t2), then the solution with time constaqf(t) = q; is the target.

Other features derived from the data besides BIMEG signals as the argumendf (1.1) and (1.2)
are often usede.g.ERP/ERF waveforms which represent averag®tEG signals across multiple trials,
mean map in the case of stable potential/field topographyngisome period of time, or signal frequency
components to localize the sources of the oscillationstefést.

Depending on the treatment of (1.2), the inverse problem eaprésented in a couple of different
ways. The brute-force minimization of (1.2) in respect téhbparameters andq, and the consideration
of different K’ neuronal sources, is generally callEE@D fitting Because of non-linear optimization, this
approach works only for cases where there is a relativelylsmabber of sourced, and therefore the
inverse problem formulation is over-determined, (1.1) cannot be solved exactl§ (, q) > 0). If fixed
time locations of the target dipoles can be assumed, thetsspace of non-linear optimization is reduced
and the optimization can be split into two steps: (a) noerdiroptimization to find locations of the dipoles,
and then (b) analysis to determine the strength of the dipdléis assumption constitutes the so-callec

spatiotemporal ECD model
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Two other frameworks have been suggested as means of aydidirpitfalls associated with non-
linear optimization: Distributed ECD (DECD) and beamforminge3& two approaches are presented it

detail in the next sections.

1.3.2 Linear Inverse Methods: Distributed ECD

In case of multiple simultaneously active sources, anraare to solving the inverse problem by ECD
fitting is a distributed source model. The label Distribut€@DE(DECD) will be used further in the text to
refer to this type of model. The DECD is based on a spatial sapli the brain volume and distributing
the dipoles across all plausible and spatially small arghih could be a source of neuronal activation. In
such cases, fixed locations ) are available for each source/dipole, removing the négesisnon-linear
optimization as in the case of the ECD fitting. The forward niddlel) can be presented for a noiseless
case in the matrix form

X = GQ, (1.3)

whereG, M x LN lead fieldmatrix, is assumed to be static in time. The-th entry of G describes how
much a sensoris influenced by a dipolg wherej varies over all sensors whilevaries over every possible
source, or to be more specific, every axis-aligned compowiegtery possible sourcey;; = G(r;, p;).
The vectorz contains indices of. such projectionsi.e.7 = [i,i + N,i + 2N] whenL = 3, and7 = i
when the dipole has a fixed known orientation. Using this nataii® ; corresponds to the lead matrix
for a single dipoley;. The M xT matrix X holds theEMEG data, while theL. N xT" matrix Q (note that
Q,, = q;(t)) corresponds to the projections of the ECD’s moment dnesthogonal axes.

The solution of (1.3) relies on finding an inver6e" of the matrixG to express the estima@ in
terms ofX

Q =G'X, (1.4)

and will produce a linear maj — Q. Other than being computationally convenient, there is natim
reason to take this approach. The task is to minimize the f&mation (1.2), which can be generalized by

the weighting of the data to account for the sensor noise arubitariance structure:

£Q) =tr((X - GQ)' W' (X - GQ)), (1.5)

whereWy! is a weighting matrix in sensor space.
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A zero-mean Gaussian signal can be characterized by the siagariance matrixC,. In case of a
non-singularC, the most simple weighting schenWx = C. can be used to account for non-uniform
and possibly correlated sensor noise.

Such a brute-force approach solves some problems of ECD mgdspecifically the requirement
for a non-linear optimization, but, unfortunately, it iotluces another problem: the linear system (1.3) i
ill-posed and under-determined because the number of sampplssible source locations is much highel
than the dimensionality of the input data space (which caexxted the number of sensoigd, N > M.
Thus, there is an infinite number of solutions for the lingatem because any combination of terms from
the null space ofz will satisfy equation (1.4) and fit the sensor noise perfechiyother words, many
different arrangements of the sources of neural activatidinin the brain can produce any given MEG or

EEG map. To overcome such ambiguity, a regularization terimtioduced into the error measure

£(Q) =£(Q)+1c(Q), (1.6)

where) > 0 controls the trade-off between the goodness of fit and thdaegation termC(Q).

The equation (1.6) can have different interpretations déjpegy on the approach used to derive it anc
the meaning given to the regularization te€ifQ). All of the following methods provide the same result
under specific conditions [13, 67]: Bayesian methodology &ximize the posteriop(Q|X) assuming
Gaussian prior 0l [11], Wiener estimator with prope®. andCg, Tikhonov regularization to trade-off
the goodness of fit (1.5) and the regularization téh@)) = tr(QTWalQ) which attempts to find the
solution with weighted bwva1 minimal 2nd norm. All the frameworks lead to the solution o tiext
general form

G" = (GTWL'G+ W) 'GTWy! (1.7)
If and only if Wq andWx are positive definite [62] (1.7) is equivalent to
Gt =WqG (GWqoG™ + \Wx) L. (1.8)

In case when viable prior information about the source distion is availableQ,, it is easy to
account for it by minimizing the deviation of the solutiontrimm 0 (which constitutes the minimal 2nd

norm solutionG™), but from the prioQ,,,i.e.C(Q) = tr((Q — QP)TW{JI(Q —Q,))- Then (1.6) will be
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minimized at

Q=G'X+(I-G'G)Q,=Q,+G"(X-GQ,). (1.9)

For the noiseless case, with a weightednorm regularizer, the Moore-Penrose pseudo-invers
gives the invers&* = G' by avoiding the null space projections Gfin the solution, thus providing a
unique solution with a minimal second no@ = WqG (GWqG ')~

TakingWq = Iy, Wx = Iy andQ, = 0 constitutes the simplest regularized minimum norr
solution (Tikhonov regularization). Classically,is found using cross-validation [57] or L-curve [66]
techniques, to decide how much of the noise power should heyhtanto the solution. Phillips et al.
[145] suggested iterative method ReML where the conditiorpéetation of the source distribution and
the regularization parameters are estimated jointly. Aalgitl constraints can be added to impose ai
additional regularization: for instance temporal smoes®[25].

As presented in (1.8)G™ can account for different features of the source or dataespgc
incorporating them correspondingly inW q andWx. Next data-driven features are commonly used ir

EMSI

e Wx = C, accounts for any possible noise covariance structure @t, i§ diagonal, will scale the

error terms according to the noise level of each sensor;
o Wq = W, = Cg accounts for prior knowledge of the sources covariance tstreic
‘W q, can also account for different spatial features

e Wq = W, = (diag (GTG))fl normalizes the columns of the matr® to account for deep

sources by penalizing voxels too close to the sensors [3; 10

o Wq = Wy, where thei-th diagonal element incorporates the gray matter contetité area of
thei-th dipole [144],i.e. the probability of having a large population of neurons tépaf creating

the detecte@MEG signal;

e Wq = (W, "W,)~!, where rows oW, represent averaging coefficients for each source [10]. S

far only geometrical [61] or biophysical averaging matsi¢é2] were suggested;

o W incorporates the first-order spatial derivative of the imgiP0] or Laplacian form [140].
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Features defined by the diagonal matriceg.(W, and W) can be combined through the simple
matrix product. An alternative approach is to pres@&i, in terms of a linear basis set of the individual
W, factors,i.e. Wq = 11y Wi+ 11s Wy + - - -, with later optimization of; via the EM algorithm [144].

To better condition the under-determined linear inversédlem (1.4), Phillips et al. [144] suggested
to perform the inverse operation in the space of the larggsheectors of th&Vq. Such preprocessing
can also be done in the temporal domain, when a similar sutespelection is performed using prior
temporal covariance matrix, thus effectively selecting ffequency power spectrum of the estimatec
sources.

Careful selection of the described features of data and s@mpaces helps to improve the fidelity of
the DECD solution. Nevertheless, the inherent ambiguity ofirterse solution precludes achieving a high
degree of localization precision. It is for this reason thadlitional spatial information about the source
space, readily available from other functional modalisesh as fMRI and PET, can help to condition the

DECD solution (Section 3.3.4).

1.3.3 Beamforming

Beamforming (sometimes called a spatial filter or a virtualsse) is another way to solve the inverse
problem, which actually does not directly minimize (1.2). Aadmformer attempts to find a linear
combination of the input datq; = F'x, which represents the neuronal activity of each dipglén the
best possible way one at a given time. As in DECD methods, thelsspace is sampled, but, in contrast
to the DECD approach, the beamformer does not try to fit all tisenled data at once.

The linearly constrained minimum variance (LCMV) beamforrfie81] looks for a spatial filter
defined ag™ of size M x L minimizing the output energFiTCXFi under the constraint that onty; is
active at that timei.e. that there is no attenuation of the signal of interd8tG.; = 6,1, where the
Kronecker deltas;; = 1 only if & = i and0 otherwise. Because the beamforming filRrfor the i-th
dipole is defined independently from the other possibleldgandex: will be dropped from the derived
results for the clarity of presentation.

The constrained minimization, solved using Lagrange piigtis, yields

F=(G,'C{G,)'G,"Cc{ (1.10)
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This solution is equivalent to (1.7), when applied to a sirdiole with the regularization term omitted.
Source localization is performed using (1.10) to computesdiriance of every dipolg, which, in the case

of uncorrelated dipole moments, is

vg = tr((G;TCx'G.;) ™). (1.11)

The noise-sensitivity of (1.11) can be reduced by using thisenvariance of each dipole as normalizing

factorv, = tr((G.;'C;'G.;)7!). This produces the so-callerbural activity index

L="a (1.12)

V(

An alternative beamformesynthetic aperture magnetometySAM [149], is similar to the LCMV
if the orientation of the dipole is defined, but it is quitefeient in the case of a dipole with an arbitrary
orientation. A vector of lead coefficientg () is defined as a function of the dipole orientation. This
returns a single vector for the orientatiéof the:-th dipole, as opposed to the earlier formulation in whict

the L columns ofG. ; played a similar role. With this new formulation, the spktfiiger is constructed

£(0) = mgi(e)T(Cx +AC,)! (1.13)
which, under standard assumptions, is an optimal lineanagtir of the time course of theth dipole. The
variance of the dipole, accordingly, is also a functior gépecificallyvq(0) = 1/(g:(0) Cx'gi(0)). To
compute the neuronal activity index the original SAM forntida uses a slightly different normalization
factorv.(0) = £(0)" C.f(6), which yields a different result if the noise varianceGinis not equal across
the sensors.

The unknown value of is found via a non-linear optimization of the neuronal dttiindex for the

dipole:
vg(9)
ve(9)”

f = argmax
b

Despite the pitfalls of non-linear optimization, SAM filtegiprovides a higher SNR to LCMV by bringing
less than half of the noise power into the solution. In addjt®AM filtering results in sharper peaks of

the distribution of neuronal activity index over the volufi&6].
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Having computed, andv, using SAM or LCMV for the two experimental conditions: passiye
and active ¢), it is possible to compute a pseudealuet for each location across the two conditions
@ @
i= % (1.14)
v + v
Such an approach provides the possibility of consideringearmental design in the analysis BMEG
localization.
Unlike ECD, beamforming does not require prior knowledge of thelber of sources, nor does it
search for a solution in an underdetermined linear systetioes DECD. For these reasons, beamformint
remains the favorite method of many researchers in EMSI asdbben suggested for use in the integrativ

analysis ofMEG and fMRI which is covered in Section 3.3.5.

CHAPTER 2

MULTIMODAL EXPERIMENT PRACTICES

When you build bridges you can keep crossing them

— Rick Pitino
Obtaining non-corrupted simultaneous recordings of EEG fafidl is a difficult task due to
interference between the strong MR field and the EEG acauisitystem. Because of this limitation, a
concurrent EEG/fMRI experiment requires specialized desigh preprocessing techniques to prepar:
the data for the analysis. The instrumental approachesidedadn this section are specific to collecting
concurrent EEG and fMRI data. For obvious reasons MEG and fMiRl thust be acquired separately in
two sessions. However, even when MR and MEG are used sequenti@le is the possibility of
contamination from the magnetization of a subject’s mietathplants which can potentially disturb

MEG acquisition if it is performed shortly after the MR exjeent.

2.1 Measuring EEG During MRI: Challenges and Approaches
Developing methods for the integrative analysis of EEG anRIfélata is difficult for several reasons, not
the least of which is the concurrent acquisition of EEG and flgalif has proved challenging. The nature
of the problem is expressed by Faraday’s law of inductiorima tvarying magnetic field in a wire loop
induces an electromotive force (EMF) proportional in sptbrto the area of the wire loop and to the rate
of change of the magnetic field component orthogonal to tha.aWhen EEG electrodes are placed in ¢

strong ambient magnetic field resulting in the EMF effecesalundesirable complications arise:

e Rapidly changing MR gradient fields and RF pulses may indudages in the EEG leads placed
inside the MR scanner. Introduced potentials may greatigote the EEG signal [77]. This kind of
artifact is a real concern for concurrent EEG/MRI acquisitiboe to the deterministic nature of MR
interference, hardware and algorithmic solutions may be tmbunmask the EEG signal from MR
disturbances. For example, Allen et al. [4] suggested arageewaveform subtraction method to
remove MR artifacts which is effective in case of determinigenerative process of a signal [155].
However, it is important to note that time variations of the Mfiifact waveform can reduce the

success of this method [34, 35]. The problem can be resolvedigh hardware modification that
19
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increases the precision of the synchronization of MR and Ef&Bems [5] or during post-processing
by using precise timings of the MR pulses during EEG wavefaveraging [35]. Other techniques
that have been proposed to reduce MR and ballistocardibgrayptifacts include spectral domain

filtering, spatial Laplacian filtering, PCA (Fig. 2.1), and IQgee 20, 49, 128, 164, 171]

Even a slight motion of the EEG electrodes within the stroagjcsfield of the magnet can induce

significant EMF [68, 94]. For instance, native pulsatile iootrelated to a heart beat yields a
ballistocardiographic artifact in the EEG that can be rdutfire same magnitude as the EEG signals
themselves [55, 77]. Usually such artifacts are removed &péme average waveform subtraction

method, where the waveform is an averaged response to eatbhdata

Induced electric currents can heat up the electrode leagdaitdul or even potentially dangerous

levels, such as to the point of burning the subject [107]. €htrlimiting electric components
(resistors, JFET transistorsfc) are usually necessary to prevent the development of ntésan
currents which can have direct contact with subject’s scalputions show the safe power range

that should be used for some coil/power/sensors configaregioomply with FDA guidelines [6].

Another concern is the impact of EEG electrodes on the quafliiR images. The introduction of
EEG equipment into the scanner can potentially disturb tmedgeneity of the magnetic field and distort
the resulting MR images [77, 105]. Recent investigationsastitat such artifacts can be effectively
avoided [89] by using specially designed EEG equipment:[SpEcialized geometries, and new “MR-
safe” materials (carbon fiber, plastic) for the leads. Tottes influence of a given EEG system on fMRI
data, a comparison of the data collected both with and witheeitBEG system being present, should
be conducted. Analysis of such data usually demonstratesatihe activation patterns in two conditions
[105], although a general decrease in fMRI SNR is observed wigB E present in the magnet. A
correction to the brain matter conductivities (which aredufse forwardEEMEG modeling) for the Hall

effect finds the following first-order correction to be nedlig: oy = 4.1 x 1078+ for B = 1.5 T [21].

2.2 Experimental Design Limitations
There are two ways of avoiding the difficulties associatedhwillecting EEG data in the magnet: (1)
collect EEG and MRI data separately, or (2) use an experirhpatadigm that can work around the

potential contamination between the two modalities. Thasitat between these two alternatives will
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(Courtesy of M. Negishi and colleagues, Yale University Scluddliedicine.)



22
depend on the constraints associated with research goateethddology. For example, if an experiment
can be repeated more than once with a high degree of reljabflithe data, separafgMEG and fMRI
acquisition may be appropriate [73, 74, 120, 158]. In casegwgimultaneous measurements are essenti
for the experimental objective (e.g., cognitive experitsemhere a subject’s state might influence the
results as in monitoring of spontaneous activity or sleafesthanges), one of the following protocols car

be chosen:

Triggered fMRI: detected EEG activity of interest (epileptic dischargte,) triggers MRI acquisition
[90, 104, 161, 191]. Due to the slowness of the HR, relevant ctwimgihe BOLD signal can be
registered 4-8s after the event. The EEG signal can setib&lguafter the end of the previous
MRI block [55], so it is acquired without artifacts caused by RiEsps or gradient fields that are
present only during the MRI acquisition block. Note that Isadicardiographic and motion-caused
artifacts still can be present and will require post-proeesis order to be eliminated. Although this
is an elegant solution and has been used with some successlatétization of epileptic seizures,
this protocol does have drawbacks. Specifically, it imposisitation on the amount of subsequent
EEG activity that can be monitored if the EEG high-pass §lt not settle down soon after the MR
sequence is terminated [75]. In this case, EEG hardwareltieat not have a long relaxation period
must be used. Another drawback with this approach is that iiregjanline EEG signal monitoring
to trigger the fMRI acquisition in case of spontaneous agtivDften experiments of this kind are
calledEEG-correlated fMRHue to the fact that offline fMRI data time analysis implicitiyes EEG

triggers as the event onsets [155];

Interleaved EEG/fMRI: the experiment protocol consists of time blocks and onlynglsi modality is
acquired during each time-block [21, 112]. This means thiatyestimulus has to be presented at
least once per modality. To analyze ERP and fMRI activatidms,ttiggered fMRI protocol can
be used with every stimulus presentation so that EEG and MBeayaentially acquired in order to

capture a cleaRMEG signal followed by the delayed HR [170];

Simultaneous fMRI/EEG: pre-processing of the EEG signal mentioned in Section 2u&esl to remove
the MR-caused artifacts and to obtain an estimate of the t&E® Bignal. However, neither of
the existing artifact removing methods is proved to be ganenough to work for every type

of EEG experiment and analysis. It is especially difficultuse such an acquisition scheme for
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cognitive experiments in which the EEG evoked responsegerfdast can be of small amplitude and

completely overwhelmed by the MR noise [157].



CHAPTER 3

CONVENTIONAL MULTIMODAL ANALYSIS

The average Ph.D. thesis is nothing but the transference of

bones from one graveyard to another.

— Frank J. Dobi€A Texan in England’, 1945

There is an increasing number of reportek EG/fMRI conjoint studies, which attempt to gain
the advantages of a multimodal analysis for experimentsiiinvg perceptual and cognitive processes:
visual perception [105, 166, 170, 183] and motor activafibdb], somatosensory mapping [87, 158],
fMRI correlates of EEG rhythms [35, 56, 101, 112, 123], arbasal attention interaction [44], auditory
oddball tasks [23, 74], passive frequency oddball [108]sdry figures in visual oddball tasks [93], target
detection [120, 126], face perception [73], sleep [75]glzemge tasks [166, 185], and epilepsy [90-92
100, 108, 161, 189, 191].

This section starts with an explanation of the role of anatainVRI in multimodal experiments
followed by a description of multimodal analysis methodsdusethe above mentioned studies or test-

driven on the simulated data.

3.1 Using Anatomical MRI
The difference in captured MRI contrasts (proton densit3)(or T1, T2 relaxation times) for different
types of organic tissue makes possible the non-invasieatmn of information about the structural
organization of the brain. In addition, a regular gradiargmin echo EPI sequence is capable of detectin
transient or subtle changes of the magnetic field in cortisalie caused by neuronal activation [19, 196]
However, direct application of MRI to capture functional aityivemains limited due to a low signal-to-
noise ratio (SNR) which is why MRI is often labelleshatomical The next section briefly describes the
analysis of acquired high-resolution 3D images of the baaid how obtained structural information can

be used to analyze data collected from other modalitiesoffeer reviews see [51, 52, 135, 154]).

3.1.1 Registration of EEG and MEG to MRI
If an EEG experiment is performed inside the magnet, it isids to “mark” [95] the location of the EEG

sensors to make them distinguishable on the arﬁtomical MRIrdwtes for these locations can then be
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found either manually or automatically [165] and will lie inRl coordinate system. In case when MR
andE/MEG data are acquired in separate sessions, spatial réigistoatweeri/MEG and MRI coordinate
systems must be performed before any anatomical informai#m be introduced into the analysis of
EMEG data. There are two general possible ways for perforngggstration between MRI anfdMEG
data: (a) registering a limited set of fiducial points or (byming scalp surfaces obtained during MRI
with a digitization of the scalp duringMEG. Methods based on the alignment of the scalp surfaces (
points clouds) considered to perform better than thoseydincial-points [76, 88, 97, 159], but are more
computationally demanding and rely on iterative optimiaat In addition, it can be time consuming to
obtain the dense digitization of the subject’s head usintgles point 3D digitizer. For these reasons
the fiducial points approach remains the prefeftEG/MRI registration method [for instance 95, 176].
The fiducial points method involves the alignment of a limditet of points, which have a strict known
correspondence between the two spaces, so that each fidoicilipEMEG space with coordinatesX)
has a corresponding known point}() in MRI space. Such coupling removes the possibility of being
trapped in the local minima of the iterative surface aligninethods and makes registration simple anc
fast. The precision of the derived transformation can beeimsed by adding more pairs of corresponding
EMEG and MRI points. A more detailed description of the regtairamethod using fiducial points
follows.

Locations of the fiducial pointse(g.anatomical points: nasion, inion, pre-auricular pointsragus
of the left and right earlobes, vertex; MRI-visible capswegven bite-bar points [1, 167]) are captured
together with the locations &#MEG sensors using a 3D digitizer and then matched to the ttabtf
corresponding fiducial points obtained from the analysithef MRI for the same subject. A 3D rigid
transformation of the points from tH@VEG (x*) to the MRI coordinate systemx{—") can be defined
by the rotation matriXR and translation vector, so thatx?~* = Rx? +FY. Commonly, the quadratic
mis-registration error measure is the subject to mininvzat(R, v) = Z(x;” — xP=M)2 where P
is the number of the points. Solutions can be found with siﬁmiigeorﬁietrical formulations [193], or
iterative search optimization using Powell’'s algorithm 716 Such simplifications or complications are
not necessary because the analytical form solutions hase derived in other fields [71, 72], and they
are often used in the surface matching methods earlier s8ecu For instance, quaternions (vectors ir
L,4) can be natively used to describe a rotation in 3D spacergadi a straightforward solution of the

registration problem [71] (see Appendix C). This method ispééto implement. Its precision rapidly
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increases with the number of fiducial points, reaching théopgance of surface matching algorithms

cheaply and efficiently.

3.1.2 Segmentation and Tessellation

PD or T1/T2 3D MR images can be used to segment different igdnes (white matter, gray matter,
cerebrospinal fluid (CSF), skull, scalp) as well as abnornrah&dions (tumors) [38, 131]. Different kinds

of MR contrasts are optimal for the segmentation of the diff€ kinds of head and brain structures. For
instance, PD-weighted MR yields superior segmentation ofirther and outer skull surfaces because
bones have much smaller water content than brain tissuenméie skull easily distinguishable on PD

images. On the other hand, exploiting T1 and T2 relaxatior tilifferences between various sorts of
brain tissue leads to higher quality segmentation of strestwithin the brain.

Using triangulation (tessellation) and interpolation ip@ssible to create fine-grained smooth mest
representations or tetrahedral assemblies of the segdtisgaes [36, 146, 163]. Obtained 3D mesh of the
cortical surface alone brings valuable information to thalgsis of EMEG signals [28]: the physiology
of the neuronal generators can be considered, allowing oliraitdhe search space for activated sources
to the gray matter regions and oriented orthogonally orlpesarto the cortical surface [38, 134].

Monte Carlo studies [110] tested the influence of the origratonstraint in the case of the DECD
model and showed that such constraint leads to much bettditioming of the inverse problem while still
being robust to the error of the assumed cortical surfacela@ deviation of the orientation B0° range
leads to just a slight increase of distortion, thus not Sicgutly affecting the accuracy of the localization
procedure. Anatomical constraints improve the localizedind contrast of beamforming imaging methods
as well, but the use of anatomical constraints found to bergdgaous only in case of good MEMEG

coregistration [69].

3.1.3 Forward Modeling of EEG and MEG

Volumetric structures derived from the tessellation poure are used to create a realistic geometry of th
head, which is crucial for the forward modelinglf1EG fields. Previously, rough approximations basec
on best-fit single/multiple sphere models were developedvescome the burden of creating realistic
head geometry, but they became less favorable as the iedreasilability of powerful computational

resources made more realistic modeling possible. Spafiatmation is especially important for EEG
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forward modeling due to the fact that it is more strongly etiéel by the conductivities of the skull and the
scalp than the MEG forward model. Such inhomogeneities daffect the magnetic field at all in case of
a spherical head model, when only the inner skull surfacetiseofnain concern for the forward modeling.

There are four numerical methods available to solvétii&G modeling problem, and the Boundary
Elements Method (BEM) [65] is the most commonly used when agyti(direction independence) of the
matters is assumed, so that only boundary meshes obtairtbd Bssellation process are required. It wa:
shown, however, that anisotropy of the skull [115] and whiteten§195] can bias EEG and MEG forward
models. To solve the forward problem in the case of an amip@medium, the head volume is presentec
by a large assembly of small homogeneous tetrahedrons, Bimite Elements Method (FEM) [122] is
used to approximate the solution. Another possible way issiothe Finite Difference Method (FDM)
on a regular computational mesh [153]. Table A lists somdiglybavailable software which can help
performing the forward/MEG modeling. Forward modeling ®&MEG signal rely on the knowledge of
matter conductivities. Common values of conductivitiesdifierent tissues can be found in the literature
[50], or can be estimated on a per-subject basis using Eattmpedance Tomography (EIT) [58] or

Diffusion Tensor (DT) [179] MRI.

3.2 Forward Modeling of BOLD Signal
The successful analysis of the results of a multimodal expett remains problematic. The main problem
of multimodal analysis is the absence of a general unifyocapant of the BOLD fMRI signal in terms of
the characteristics of a neuronal response. Various mbdeksbeen suggested, on one hand they incluc
naive modeling of BOLD signal in the context of a Linear Timedrant System (LTIS). On the other
hand there are general models of the BOLD signal in terms ofiéétaiophysical processeB#lloon[26]
or Vein and Capillarny{162] models). The naive models are not general enough taiexihe variability of
the BOLD signal, whereas complex parametric models that relyilyeon a prior knowledge of nuisance
parameters (due to biophysical details), almost never dbae a reliable and straightforward means of
estimation. This fact makes it unlikely to use such compnstve models as reliable generative models o
the BOLD signal. Research continues in attempts to derive rsovtelble models to support data obtainec
in different modalities based on originating them neuraigihal. Interestindreuristic modebf neuronal
activation and its influence on BOLD and EEG signals was regenttjgested by Kilner, et al. [85].

Suggested model relates BOLD signal to the changes in spehaedcteristics of the EEG signal during
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activation. Proposed model formulation agrees well with #sults of many multimodal experiments
which used other methods of multimodal analysis. Thus thidehsounds promising and it might reveal
reliable interdependencies between different brain inggiodalities. The following section describes
modeling issues in greater detail to further underline ithné@éd applicability of many multimodal analysis

methods covered in Section 3.3.

3.2.1 Convolutional Model of BOLD Signal
Various experimenters had originally focused on simplerest designs such as block design paradigm
in order to exploit the presumed linearity between their glegiarameters and the HR. This assumptior
depends critically on the ability of the block design to aifythe SNR and the implicit belief that the HR
possess more temporal resolution than indicated by the TR.

In order to account for the present autocorrelation of the lRsed by its temporal dispersive
nature, Friston et al. [47] suggested to model HR with a LTISd@&scribe the output of such a system,
convolution of an input (joint intrinsic and evoked neurbaetivity ¢(¢)) with a hemodynamic response

function (HRF)A(t) is used to model the HR

f(@) = (h*q)(t). @1

Localized neuronal activity itself is not readily availablia means of non-invasive imaging,
therefore it is more appropriate to verify LTIS modeling @alrdata as a function of parameters of the
presented stimulii . duration, contrast).

The convolutional model was used on real data to demondimetgity between the BOLD response
and the parameters of presented stimuli [22, 33]. In factymexperimenters have shown apparen
agreement between LTIS modeling and real data. Specificlpdtieen possible to model response:
to longer stimuli durations by constructing them using tegponses to shorter duration stimuli, which is
consistent with LTIS modeling. Because of the predictive easgits relative simplicity of application and
resulting ignorance of biophysical details this modelipg@ach became widely accepted. Unfortunately
LTIS as a modeling constraint is very weak therefore allowingagbitrary choice of parametric HRF
based only on preference and familiarity.

Over the years multiple models for the HRF have been suggesteel.mbst popular and widely

used up until now is a single probability density functiordDf of Gamma distribution by [99]. It was
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elaborated by Glover [54] to perform the deconvolution of R signal, and the nuisance parameter:

(nq,t1, ny, ta, az) of the next HRF were estimated for motor and auditory areas

1 a e \mi
h(t) = — ™ et/ — 22y o=t/ where ¢ = max{™ et = (—) (3.2)
&) Co t n;t;

which can be described as the sum of two unscaled PDFs of Gamfriaudien. The first term captures
the positive BOLD HR and the second term is to capture the ovetstiten observed in the BOLD signal.
Many other simple and as well as more sophisticated models of WHRE suggested: Poisson PDF [47],
Gaussians [148], Bayesian derivations [29, 53, 116] and stfidre particular choice of any of them was
primarily dictated by some other than bio-physics motimatieasy Fourier transformation, presence o
post-response dip or “best-fit” properties.

Since the suggestion of the convolutional model descriBi@¢iD response, different aspects of HR
linearity became an actively debated question. If HR is lintleen what features of the stimulus.g.
duration, intensity) or neuronal activatioe.g.firing frequency, field potentials, frequency power) does i
vary linearly with? As the first approximation, it is importaatdefine the ranges of the above mentionec
parameters in which HR was found to behave linearly. For exengdrly linearity tests [54] showed
the difficulty in predicting long duration stimuli based om @stimated HR from shorter duration stimuli.
[169] reviewed existing papers describing different aspe€inon-linearity in BOLD HR and attempted
to determine the ranges of linearity in respect to stimutation in three cortical areas: motor, visual and
auditory complex. The results of these analyses have shatralthough there is a strong non-linearity
observed on small stimuli durations, long stimuli durasishow higher degree of linearity.

It appears that a simple convolutional model generally is gapable of describing the BOLD
responses in terms of the experimental design parametsustifare varying in a wide range during the
experiment. Nevertheless LTIS might be more appropriateddehBOLD response in terms of neuronal
activation if most of the non-linearity in the experimendalsign can be explained by the non-linearity of

the neuronal activation itself.

3.2.2 Neurophysiologic Constraints
In the previous section the subject of linearity between tkgeemental design parameters and the
observed BOLD signal was explored. For the purpose of thigweitimay be more interesting to explore

the relation between neuronal activity and HR.
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It is known that&MEG signals are produced by large-scale synchronous ndwacinaty, whereas
the nature of the BOLD signal is not clearly understood. The BOidna does not correspond to
the neural activity that consumes the most energy [8], ay easearchers believed. Furthermore, the
transformation between the electrophysiological indicatf neuronal activity and the BOLD signal
cannot be linear for the entire dynamic range, under all exygntal conditions and across all the brain
areas. Generally, a transformation function cannot belisieae the BOLD signal is driven by a number
of “nuisance” physiologic processes such as cerebral rbtaixygen consumption (CMR(, cerebral
blood flow (CBF) and cerebral blood volume (CBV) as suggested b#tieon mode[26], which are
not generally linear.

Due to the indirect nature of the BOLD signal as a tool to measeteamal activity, in many
multimodal experiments a preliminary comparative studgtase first in order to assess the localization
disagreement across different modalities. Spatial digplent is often found to be very consistent acros
multiple runs or experiments (see Section 3.3.3 for an el@mSpecifically, observed differences can
potentially be caused by the variability in the cell types aeuronal activities producing each particular
signal of interest Nunez and Silberstein [135]. That is why itportant first to discover the types of
neuronal activations that are primary sources of the BOLDadighome progress on this issue has bee
made. A series of papers generated by a project to cast ligttteorelationship between the BOLD signal
and neurophysiology, have argued that local field potenidP) serve a primary role in predicting BOLD
signal [111, and references 27, 29, 54, 55 and 81 thereiris Work countered the common belief that
spiking activity was the source of the BOLD signal [for examp]dy demonstrating a closer relation of
the observed visually evoked HR to the local field potentialsR) of neurons than to the spiking activity.
This result places most of the reported non-linearity betwegerimental design and observed HR intc
the non-linearity of the neural response, which would beagfiultimodal analysis.

Note that the extracellular recordings experiments desdrdbove, were carried out over a small
ROls, therefore they inherit the parameters of underlyingdaynamic processes for the given limited
area. Thus, even if LFP is taken as the primary electroplogical indicator of the neuronal activity
causing BOLD signal, the relationship between the neuronaligcand the hemodynamic processes on
a larger scale remains an open question.

Since near-infrared optical imaging (NIOI) is capable of capg the individual characteristics of

cerebral hemodynamics such as total, oxy-, and deoxy-hlefiogcontent, some researchers tried to ust
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NIOI to reveal the nature of the BOLD signal. Rat studies using 2ficabimaging [41] showed the
non-linear mapping between the neuronal activity and evbleadodynamic processes. This result shoulc
be a red flag for those who try to define the general relation letweuronal activation and BOLD signal
as mostly linear. The conjoint analysis of BOLD and NIOI signeigealed the silent BOLD signal during
present neural activation registeredBiy EG modalities [162]. This mismatch betwegmMEG and fMRI
results is known as theensory motor paradokl41]. To explain this effect, th&ein and Capillary
model was used to describe the BOLD signal in terms of hemodignaamameters [162]. The suggested
model permits the existence of silent and negative BOLD resgmduring positive neuronal activation.
This fact, together with an increasing number of studies [£8&firming that sustained negative BOLD
HR is a primary indicator of decreased neuronal activatioovige yet more evidence that the BOLD HR
generally is not a simple linear function of neuronal adid/abut at best is a monotone function which has
close to linear behavior in a wide range of nuisance neuraplogsc parameters. This section concludes
by noting that the absence of a generative model of the BOLDorespprevents the development of
universal methods of multimodal analysis. Neverthelesgjsmissed in this section and is shown by the
results presented in the next section, there are specifiesant applications where the linearity betweer
BOLD and neuronal activation can be assumed. Such simplistaeitan be voted for by the supported

of Occam'’s razomprinciple which is to prefer simple models capable of deseglhhe data of interest.

3.3 Analysis Methods

Whenever applicable, a simple comparative analysis of thelteeobtained from the conventional uni-
modal analyses together with findings reported elsewherepearonsidered as the first confirmatory
level of a multimodal analysis. This type of analysis is véiexible, as long as the researcher knows
how to interpret the results and to draw useful conclusiespecially whenever the results of comparisor
reveal commonalities and differences between the two [18%].the other hand, by default a unimodal
analysis makes limited use of the data from the modalities emcourages researchers to look for analysi
methods which would incorporate the advantages of eachesingtiality. Nevertheless, simple inspection
is helpful for drawing preliminary conclusions on the plduiigty to perform any conjoint analysis using

one of the methods described in this section, includingetative analysis which might be considered ar

initial approach to try.
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3.3.1 Correlative Analysis of EEG and MEG with fMRI
In some experiments, tHéMEG signal can serve as the detector of spontaneous neuiietya(e.g.
epileptic discharges) or changes in the processing statgss/igilance states). The time onsets derived
from EMEG are alone valuable for further fMRI analysis, where the BOLdhal often cannot provide
such timing information. For instance, such use of EEG datahiaracteristic for the experiments
performed via a&riggered fMRlacquisition scheme (Section 2.2).

CorrelativeEEMEG/fMRI analysis becomes more intriguing if there is a strariggief in the linear
dependency between the BOLD response and featurEBs&G signal €.g.amplitudes of ERP peaks,
powers of frequency components), than between the hemodgsarhthe brain and the corresponding
parameter of the desige.g.frequency of stimulus presentation or level of stimulusrddgtion). Then
EIMEG/fMRI analysis effectively reduces the inherent bias prege the conventional fMRI analysis
methods by removing the possible non-linearity between #ségd parameter and the evoked neurong
response.

The correlative analysis relies on the preprocessifg\EG data to extract the features of interest
to be compared with the fMRI time course. The obtaif#dEG features first get convolved with a
hypothetical HRF (Section 3.2.1) to accommodate for the HRpsfmss and are then subsampled to fit
the temporal resolution of fMRI. The analysis of fMRI signatredation with amplitudes of selected peaks
of ERPs revealed sets of voxels which have a close to lineandepey between the BOLD response anc
amplitude of the selected ERP peak (N170 in [73], P300 in [74d, amplitude of mismatch negativity
(MMN) [109]), thus providing a strong correlatio®(< 0.001 [73]). A parametric experimental design
with different noise levels introduced for the stimulus detation [73, 109] or different levels of sound
frequency deviant [109] helped to extend the range of deteERP and fMRI activations, thus effectively
increasing the significance of the results found. To suppersuggested connection between the specifi
ERP peak and fMRI activated area, the correlation of the same B€ipal with the other ERP peaks
must be lower if any at all [73]. As a consequence, such anatgsiaot prove that any specific peak of
EEG is produced by the neurons located in the fMRI detecteasat®ne but it definitely shows that they
are connected in the specific paradigm.

The search for the covariates between the BOLD signal and widadmeuronal signals, such
as the alpha rhythm, remains a more difficult problem due ¢oatmbiguity of the underlying process,

since there are many possible generators of alpha rhythmesponding to various functions [130].
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As an example, Goldman et al. [56] and Laufs et al. [101] wereitgplor the dependency between
fMRI signal and EEG alpha rhythm power during interleaved antukaneous EEG/fMRI acquisition
correspondingly. They report similar (negative correlatin parietal and frontal cortical activity), as
well as contradictory (positive correlation) findings, whican be explained by the variations in the
experimental setup [102] or by the heterogeneous coupletyéden the alpha rhythm and the BOLD
response [101]. Despite the obvious simplification of theelative methods, they may still have a role to

play in constraining and revealing the definitive forwarddalin multimodal applications.

3.3.2 Decomposition Techniques

The common drawback of the presented correlative analysésitpies is that they are based on the
selection of the specific feature of tRMVEG signal to be correlated with the fMRI time trends, which
are not so perfectly conditioned to be characterized pilynhy the feature of interest. The variance of
the background processes, which are present in the fMRI ddtararpossibly explained by the discarded
information from theEMEG data, can reduce the significance of the found correlafidrat is why it
was suggested [117] to use the entirety of Eh¢EG signal, without focusing on its specific frequency
band, to derive thEMEG and fMRI signal components which have the strongest ctiselamong them.
The introduction of decomposition techniques (such asshasisuit, PCA, ICAgtc) into the multimodal
analysis makes this work particularly interesting.

To perform the decomposition [117], Partial Least-SquéiRtsS) regression was generalized into
the tri-PLS2 model, which represents &l EG spectrum as a linear composition of trilinear component:
Each component is the product of spatial (am&MN\gEG sensors), spectral and temporal factors, wher
the temporal factors have to be maximally correlated with dbgesponding temporal component of
the similar fMRI signal decomposition into bilinear compate products of the spatial and temporal
factors. Analysis using tri-PLS2 modeling on the data froB] found a decomposition into 3 components
corresponding to alpha, theta and gamma bands of the EE@lsighe fMRI components found had a
strong correlation only in alpha band component (Pearsoreletion0.83 (p = 0.005)), although the
theta component also showed a linear correlatiahf (p = 0.070). It is interesting to note, that spectral
profiles of the trilinear EEG atoms received with and withouRNhfluence were almost identical, which

can be explained either by the non-influential role of fMRIrFRLS2 decomposition of EEG, or just by a
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good agreement between the two. On the other hand, EEG dsefigitieled fMRI decomposition, so that

the alpha rhythm spatial fMRI component agreed very well withghevious findings [56].

3.3.3 Equivalent Current Dipole Models

ECD is the most elaborated and widely used technique for sdacedization in EMSI. It can easily
account for activation areas obtained from the fMRI analjfsiss giving the necessary fine time-space
resolution by minimizing the search space of non-lineaimoigttion to the thresholded fMRI activation
map. While being very attractive, such a method bears mokegfroblems of the ECD method mentioned
in Section 1.3, and introduces another possible bias dubetdeélief in the strong coupling between
hemodynamic and electrophysiological activities. Fos ti@iason it needs to be approached with cautio
in order to carefully select the fMRI regions to be used in t®EMRI combined analysis.

Although good correspondence between ECD and fMRI results én déund [3], some studies
reported a significant (1-5 cm) displacement between lawsitidotained from fMRI analysis and ECD
modeling [15, 59, 87, 108]. It is interesting to note, thattsdisplacement can be very consistent acros
the experiments of different researchers using the sansigan (for instance motor activations [86,
87, 158]). As it was already mentioned, in the first step, a Engpmparison of detected activations
across the two modalities can be done to increase the fdliabfi dipole localization alone. Further,
additional weighting by the distance from the ECD to the cqoesling fMRI activation foci can guide
ECD optimization [188] and silent in fMRI activations can beammodated by introducing free dipoles
without the constraint on dipole location.

Auxiliary fMRI results can help to resolve the ambiguity of tmwerseEEMEG problem if ECD
lies in the neighborhood of multiple fMRI activations. Plagimultiple ECDs inside the fMRI foci
with successive optimization of ECDs orientations and magegunay produce more meaningful results.
especially if it better describes M EG signal by the suggested multiple ECDs model.

Due the large number of consistent published fMRI resultgdhss viable to perform a puBMEG
experiment with consequent ECD analysis using known releXdRt &ctivation areas found by the other
researchers performing the same kind of experiment [46§ finoviding the missing temporal explanation

to the known fMRI activations.
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3.3.4 Linear Inverse Methods

Dale and Sereno [38] formulated a simple but powerful lineamtework for the integration of different
imaging modalities into the inverse solution of DECD, where thlat®on was presented as unregularizec
(just minimum-norm) (1.8) wittWq = Cgs and A\Wx = C.. The simplest way to account for fMRI
data is to use thresholded fMRI activation map as the inveskgisn space but this was rejected [51]
due to its incapability to account for fMRI silent sources, @rhis why the idea to incorporate variance
information from fMRI intoCg was further elaborated [110] by the introduction of relativeighting for
fMRI activated voxels via constructing a diagonal maWky = Wivr = {;;}, wherey;; = 1 for fMRI
activated voxels and;; = v, € [0, 1] for voxels which are not revealed by fMRI analysis. A Monte Carlc
simulation showed that, = 0.1 (which corresponds to th#% relative fMRI weighting) leads to a good
compromise with the ability to find activation in the areas varace not found active by fMRI analysis and
to detect active fMRI spots (even superficial) in the DECD ingesslution. An alternative formulation
of the relative fMRI weighting in the DECD solution can be giveingsa subspace regularization (SSR)
technique [2], in which af/MEG source estimate is chosen from all possible solutionsrithérsy the
EMEG signal, and is such that it minimizes the distance to apadesdefined by the fMRI data (Fig. 3.1).
Such formulation helps to understand the mechanism of fMRiénce on the inverseMEG solution:
SSR biases underdetermined BA@EG source locations toward the fMRI foci.

The relative fMRI weighting was tested [37] in an MEG experitreamd found conjoint fMRI/MEG
analysis results similar to the results reported in previddR|, PET, MEG and intracranial EEG studies.
Babiloni et al. [9] followed Dale et al. [37] in a high resoluti®EG and fMRI study to incorporate
non-thresholded fMRI activation maps with other factors.stof all, the Wy, was reformulated to
(Wimri)ii = vo + (1 — 19)A;/Amax. Where A; corresponds to the relative change of the fMRI signa
in the i-th voxel, andA.« is the maximal detected change. This way the reldlivieEG/fMRI scheme
is preserved and locations of stronger fMRI activations haigher prior variance. Finally the three
available weighting factors were combined: fMRI relative weiigdy, correlation structure obtained from
fMRI described by the matrix of correlation coefficieli{s;, and the gain normalization weighting matrix
W, (Section 1.3.2)Wq = W2, WY K WYWL2 - Although Wiyr:, alone had improved EMSI
localization, the incorporation of thE s lead to finer localization of neuronal activation associatéth

finger movement.
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Figure 3.1 Geometrical interpretation of subspace regularizatioh@&MEG/EEG source space. (A)

The cerebral cortex is divided into source elemeiitsqs, . .
fixed orientation. All source distributions compose a vee¢ton K-dimensional space. (B) The source

.,qk, each representing an ECD with a

distributionq is divided into two componenig® € S? = range(G "), determined by the sensitivity of
MEG sensors and” € null G, which does not produce an MEG signal. (C) The fMRI activatiogfing
another subspacg™R'. (D) The subspace-regularized fMRI-guided soluidiR € M is closest tas™R~!,
minimizing the distanc§PqS°R|, whereP (a N x N diagonal matrix withP;; = 1/0 when thei-th fMRI
voxel is active/inactive) is the projection matrix into tehogonal complement ¢f™R'. (Adapted from

[2, Figure 1])
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Although most of the previously discussed DECD methods aréviedan finding minimalZ, norm
solution, the fMRI conditioned solution with minimak norm (regularization termin (1.6) Q) = ||Q|1)
is shown to provide a sparser activation map [48] with actifdtyalized to the seeded hotspot locations
[188].

An fMRI-conditioned linear inverse is an appealing method doeits simplicity, and rich
background of DECD linear inverse methods derived for theyaimbf EMEG signals. Nonetheless, one
should approach these methods with extreme caution in a dowtare non-linear coupling between

BOLD and neural activity is likely to overwhelm any linear apgiroation [59].

3.3.5 Beamforming

Lahaye et al. [96] suggest an iterative algorithm for camja@inalysis of EEG and fMRI data acquired
simultaneously during an event-related experiment. Tineithod relies on iterated source localization by
the LCMV beamformer (1.10), which makes use of both EEG and fMR&dThe covarianc€ y used
by the beamformer is calculated anew each time step, uséngréviously estimated sources and curren
event responses from both modalities. This way neurored sitth a good agreement between the BOLLC
response and EEG beamformer reconstructed source anepliiadefit most at each iteration. Although
the original formulation is cumbersome, this method apppasmising as (a) it makes use of both spatia
and temporal information available from both modalitiesd &b) it can account for silent BOLD sources
using an electro-metabolic coupling constant which is et for each dipole and defines the influence
of the BOLD signal at a given location onto the estimatiorgf which, in turn, drives the estimate of

Cy.

3.3.6 Bayesian Inference

During the last decade, Bayesian methods became dominar prdbabilistic signal analysis. The idea
behind them is to use Bayes’ rule to derivpasterior probabilityof a givenhypothesi$aving observed
dataD, which serves asvidencdo support the hypothesis

p(DIH) p(H)

p(p) = P TE
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wherep(H) and p(D) are prior probabilities of the hypothesis and evidenceespondingly, and the

conditional probabilityp(D|H) is known as dikelihood function Thus, (3.3) can be viewed as a method
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to combine the results of conventional likelihood analyE@smultiple hypotheses into the posterior
probability of the hypothesegH|D) or some function of it, after been exposed to the data. Thigeter

posterior probability can be used to select the most prebhppothesisj.e. the one with the highest

probability

7:1‘9 = arg mﬁLXp(H‘D) = arg max log p(D|H) + log p(H) (3.4)

leading to the maximura posteriori(MAP) estimate, where the prior data probabilifyD) (often called
a partition functior) is omitted because the data does not depend on the choibe bfypothesis and it
does not influence the maximization ovér

For the class of problems related to the signal processympmthesisH generally consists of a model
M characterized by a set of nuisance parame®ers {6, 6., }. The primary goal usually is to find a
MAP estimate of some quantity of intereAt or, more generally, its posterior probability distributio
p(A|D, M, ©). A can be an arbitrary function of the hypothesis or its compthA = f(H), or often
just a specific nuisance parameter of the malle: ¢,. To obtain posterior probability of the nuisance
parameter, its marginal probability has to be computed byirttegration over the rest of the parameters

of the model

p(6,1D, M) = / (61, 05,0/ D. M) b, = / (61165, D. M) p(0 D M) db...  (35)

Due to the integration operation involved in determinatibammy marginal probability, Bayesian analysis
becomes very computationally intensive if analytical gnéé solution does not exist. Therefore, sampling
techniquesd€.g.MCMC, Gibbs sampler) are often used to estimate full posteriabability p(A|D, M),
MAP A p = arg maxa p(A|D, M), or some statistics such as an expected val{| D, M| of the
quantity of interest.

The Bayesian approach sounds very appealing for the develtpof multimodal methods. It is
inherently able to incorporate all available evidence, Wwhiin our case obtained from the fMRI and
EMEG data P = {X,F}) to support the hypothesis on the location of neuronal atitims, which
is in the case of DECD model i3t = {Q, M}. However, the detailed analysis of (3.3) leads tc
necessary simplifications and assumptions of the priorghitiies in order to derive a computationally
tractable formulation. Therefore it often loses its gefigrarhus to derive a MAP estimator f(ﬁ‘g‘x‘B,M

Trujillo-Barreto et al. [178] had to condition the computatiby a set of simplifying modeling assumptions
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such as: noise is normally distributed, nuisance parameteforward models have inverse Gamma
prior distributions, and neuronal activation is descrilbgda linear function of hemodynamic response.
The results on simulated and experimental data from a sa@sory MEG/fMRI experiment confirmed
the applicability of Bayesian formalism to the multimodalaiging even under the set of simplifying
assumptions mentioned above.

Usually, modelM is not explicitly mentioned in Bayesian formulations (sust{5)) because only
a single model is considered. For instance, Bayesian fotionlaf LORETAEMEG inverse corresponds
to a DECD model, wher® = Q is constrained to be smooth (in space), and to cover wholexsutface.
In the case of thBayesian Model Averagin@®@MA), the analysis is carried out for different modeVd;,
which might have different nuisance parameterg, EMEG and BOLD signals forward models, possible
spatial locations of the activations, constraints to raguéEMEG inverse solution. In BMA analysis we
combine results obtained using all considered models tgoterthe posterior distribution of the quantity
of interest

p(A[D) = Zp(A\D,Mi)pwi\D), (3.6)

where the posterior probability M;|D) of any given mode\; is computed via Bayes’ rule using prior

probabilitiesp(M;), p(D) and the likelihood of the data given each model

p(DIM,) = / p(D|©, M:) p(©|M,) d©. (37)

Initially, BMA was introduced into thé/MEG imaging [177], where Bayesian interpretation of
(1.8) was formulated to obtaip(Q|X, F) for the case of Gaussian uncorrelated no®éx( = C. =
v.I). In order to create a model, the brain volume gets pargtiointo a limited set of spatially distinct
functional compartments, which are arbitrarily combinedi&dine aM;, search space for tl@MEG
inverse problem.

At the end, different models are sampled from the posteriaogility p(M;|X) to get the estimate

of the expected activity distribution of ECDs over all consetesource models
E[QIX] =) E[QIX, M;] p(M,X)

Var[Q|X] = Y Var[Q|X, M;] p(M;|X),
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where the normalized probabilipp(M;|X), Bayes’ Facto;,, and prior oddsy;, are

aiBip By = P(X|M;) @ = p(My)
Z aBro ' " pMo)
k

PMiIX) = (X My)

In the original BMA framework folMEG [177]«; = 1V4, i.e.the models had a flat prior PDF because
no additional functional information was available at thatnt. Melie-Garta et al. [119] suggested to
use the significance values of fMRI statistical t-maps towdgr{.M;) as the mean of all such significance
probabilities across the presentA; compartments. This strategy causes the models consistitig o
compartments with significantly activated voxels get higtréor probabilities in BMA. The introduction
of fMRI information as the prior to BMA analysis reduced the aguiity of the inverse solution, thus
leading to better localization performance. Although farthanalysis is necessary to define the
applicability range of the BMA irEMEG/fMRI fusion, it already looks promising because of the use
fMRI information as an additional evidence factofiVEG localization rather than a hard constraint.
Due to the flexibility of Bayesian formalism, various Bayesiarthods solvinggMEG inverse
problem already can be easily extended to partially accodateoevidence obtained from the analysis
of fMRI data. For instance, correlation among different areatained from fMRI data analysis can
be used as a prior in the Bayesian reconstruction of cortelsterces [152]. The development of a
neurophysiologic generative model of BOLD signal would allmany Bayesian inference methods (suct

as [156]) to introduce complete temporal and spatial fMRoinfation into the analysis 6MEG data.

CHAPTER 4

MOTIVATIONS FOR FURTHER DEVELOPMENT OF MULTIMODAL METHODS

The only reason some people get lost in thought is because

it's unfamiliar territory

— Paul Fix

As shown above, fMRI BOLD signal is inherently non-linear as a fiamcof neuronal activation.
Nevertheless there have been multiple reports of linearrdipey between the observed BOLD respons
and the selected set BMEG signal features. In general, such results are not instmgiwith the non-
linearity of BOLD, since of course, often a non-linear functian be well approximately linear in the
context of a specific experimental design, regions of ister@ dynamic ranges of the selected features ¢
EIMEG signals. Besides dominant LFP/BOLD linearity reported bgdthetis and also confirmed in the
specific frequency bands of EEG signal during flashing chibderd experiment [168], there have been
reports of a strong correlation between the BOLD signal ang#iand other features BMEG responses.

The exploration of techniques in addition to the ones prieskim the Section 3.3, and analysis of
the other components contributing ®MEG signals might bring fruitful results in terms of the canjo
analysis. Next Section 4.1 discusses such possible nowttidins before Section 4.2 sketches the

motivation, goals and scope of this Ph.D. thesis.

4.1 Alternative Ways to Explore

In the past DCEIMEG signal component (Section 1.1) has not been of an attefoio multimodal
integration, despite recent experiments showing the storgelation between the changes of the
observed DC-EEG signal and hemodynamic changes in the hurman [82]. In fact, such
DC-EMEG/BOLD coupling suggests that the integration of fMRI and BI@EG might be a particularly
useful way to study the nature of the time variations in HR aigiSuch variations are usually observed
during fMRI experiments but are not explicitly explained b texperimental design or by the physics of
MR acquisition process.

Having selected features of the signals which would be inebimehe fusion, many EMSI methods
can be naturally extended to account for fMRI data if a generdorward model of BOLD signal is

available. For instance, direct universal-approﬂnanlweise methods [79, 80] have been found to bt
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very effective (fast, robust to noise and to complex forwaradels) for theMEG dipole localization
problem, and could be augmented to accept fMRI data if thergéme model for it was provided.

FMRI conditioned EMEG DECD methods have been shown to be relatively simple ar
mathematically compelling for source imaging when there goad spatial agreement betweghEG
and fMRI signals. Due to the advantages of these methods, ittnhig valuable to consider other
advanced&MEG DECD methods such as FOCUSS [60], which is known to bring improneme
estimation of focal sources over simple linear inverse wds14].

ICA as a signal decomposition technique has been found ifeict removing artifacts irfMEG
without degrading neuronal signals [82, 84, 174, 184], meeed is known to be superior to PCA in the
component analysis 8IMEG signals [81]. Initial research using ICA of fMRI in the sgétiomain [118]
was controversial, however consecutive experiments andrgkzation of ICA to fMRI in the temporal
domain (see [27] for an overview) has increased its normatee. The development of ICA methods
for the analysis of multimodal data provides a logical esiten of the decomposition techniques coverec
earlier.

The formulation of a general BOLD signal model capable of dbsw the desired non-linear
dependency in terms of neuronal activation and nuisancsiglogical parameters would constitute a
major step toward the development of the multimodal methwaitls wider range of application than in
the current “linear” domain. Since most of the multimodaltheels presented before rely upon the lineai
dependence between signals, it is also important to anadygand and formalize the knowledge about
the “linear” case, which is the simplest modeling assumptialid in many instances. Thus it deserves

closer attention especially if we follow the notion@tcam'’s razomprinciple.

4.2 “The Challenge”
As many other attempts to process different brain imagingatites, this work aims to develop a viable
method for multimodal information integration. Such mettehould make use of the available temporal
and spatial information from both functional brain imagimgdalities such as fMRI and EEG or MEG.
Being said, it is important to emphasize once again, that dtieet uncertainty in the amount of synergy
which is present betwedfMEG and fMRI signals, a general methodology applicable toralibimaging
studies cannot yet to be defined. Nevertheless in the cases teeprimary goal of the experiment is to

gain a better resolution in the analysis of neuronal adtimatof the same origire(g.just motor, or just
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visual activations), assumption of linearity might be #afi the experimental design is hon-parametric,
and activations are known to be reproducible and consistenttone. The assumption that fMRI and
EIMEG signals generally correspond to the same neuronal tyctaken along with experimental design
restrictions, lets us consider simple generative models as the convolutional model (Section 3.2.1).

The search for aappropriatebrain imaging experiment converged to an interesting aatleging
topic in the brain imaging: mapping of the primary motor eartfM1) and the higher processing level areas
(e.g.PMA, SMA, Sl),i.e.the investigation of the assignment of different body partgor actions to the
responsible locations on the cortex. This type of studiek wff more than a century ago with direct
cortical stimulation in animals and the known pioneers in harstudies were Penfield and Boldrey [142].
They made direct observations by stimulating the humamlwith weak electrical shocks in conscious
patients who were undergoing surgery. Well-kndvemunculugFig. 4.1), a caricature of the human form
with body parts drawn in sizes that are proportional to theuresl extent of their representations, was
one of the outcomes of their study.

All studies aiming to create a mapping of motor cortex (or asatled somatotogy could be
split into 2 major groups: active and passive. In active issidcortex regions are stimulated either
invasively through direct stimulation of the exposed cofiee. during neurosurgical procedures) or non-
invasively using such tools as TMS. Corresponding elicitestanmovements or subject’s description
of sensation allows to discover the mapping. Safer and moa#lectying methodology is to register
neuronal activation in primary motor (M1) and somato-seng81) cortical areas using non-invasive
brain imaging techniques such @MEG and fMRI, when subject is either performing some motor tas
(e.g.finger-tapping) or experiencing sensory or nerve stimaifatFor instance, MEG experiment allowed
to distinguish cubitus from clunis along the somato-sensortex (Fig. 4.1) when subjects experiencec
stimulation of the corresponding body part [43]. Fisherlef48] suggested that such kind of study could
be used as a benchmark for different localization methodiiridea supports the challenge present ir
this task.

Although coarse mapping of body parts is well studied, fine rimappf fingers while performing
motor task is difficult to investigate with any non-invasivain imaging technique [39, 70]. Consequently,
some ad-hoc experimental design, thoughtful experimeetalp, and advanced statistical processing [3¢

are required to extract the spatial sequencing between faesad fingers. It is even more challenging [70]

1Somatotopie organized in a point-to-point representation of the surface of the body
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lateral medial Medial Lateral

(a) (b)

Figure 4.1 a Identified sites of cortical activity, an@5% confidence ellipsoids, corresponding to
stimulation of the clunis and cubitus superimposed on aeprtative magnetic resonance image. Th
two cortical sites are clearly distinct, with no overlap o 5% confidence volumes. Furthermore, the
data are in good agreement with Penfield’s neurosurgicaiypbshed homunculus. (Borrowed from [43])

b Detailed homunculus mapping.

to separate between finger taps sequential in time. After #fleofesearch investigations, fine somatotopy
of M1 remains a controversy. There is an emerging evidemee &mimal studies and fMRI human studies
in favor of distributed and overlapping cortical somatgtoppresentation [39]. Thus a methodology able
to resolve the ambiguity in this question, would be a promirsehievement in the field.

Before tackling the problem, it is helpful to highlight obu®problems with the existing studies:

e EIMEG studies investigating M1 somatotopy used single ECD niugleb get focal activation
locations. This kind of modeling is unrealistic and verydad if activation is not adequately
modeled by an ECD, which is often the case when there are multgpleation sites as it was
suggested before. Preliminary localization studies u#iigl conditioned DECD modeling [9]
were able to improve DECD localization in such kinds of taskstihey did not aim to discover and

analyze the somatotopy;
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e observed overlaps in BOLD detected activation sites can bplgidue to the spatial spread of
BOLD signal. Taking into account vessel structure or usingehgvotocols such as fCBF [143]
might improve spatial resolution of fMRI studies, thus cafefalysis of the experimental settings

and protocols should be carried out before carrying out tappimg experiment using fMRI;

e poor temporal resolution of BOLD signal does not allow anyataik sub-second temporal separatior
of the motor events, thus reliable separation between séqliertime (sub-second interval) finger

taps cannot be achieved.

Bringing bothEIMEG and fMRI modalities together is hoped to provide grater amhof spatio-
temporal information about motor activations. Althoughstriecessary to use highly parameterizec
models to describe motor activations registered with fMRI7[1%hey are believed to be consistent and
reproducible in time. Consequently they satisfy our resitris for multimodal analysis stated before.
The goal of this Ph.D. project becomes: propose multimodal analysis methods and validate them
on conjoint EEG/fMRI finger-tapping experiment.

The methods for conjoint analysis proposed in this disgertaely on simultaneous fitting of the
signals from both given modalities using the models of oesignals at the high temporal and spatia
resolution. Such modeling of both signals which are produmetemporal (fMRI) and spatiaBMEG)
filtering of the neuronal activity, implicitly defines reguization for theEMEG inverse problem, thus
making it less ill-conditioned.

It is important first to validate the suggested methags verify their capabilities and compare to
the existing methods. Chapter 6 presents the results andacimops to the other methods when appliec
to artificially generated data. While performing such sirtiales, it would be possible to investigate the
ranges of signals and noise characteristics in which suggestthods could be applied to provide reliable
results. In order to reach the goal stated above the futesestivork will consist of the experimental design

and the analysis of acquired neuroimaging data.



CHAPTER 5

MULTIMODAL IMAGING USING L-NORMS SIGNAL RECONSTRUCTION

First, this chapter introduces a general formulation offtreon problem. After that, the description of
proposed methods to derive the solution under differerttlpro conditions follows: generic formulation
in terms of the minimization of the squared sum errby filorm), outliers insensitive formulation using
minimization of the absolute error sum;(norm), and the simplifications of the problem in case of fixec

source orientation.

5.1 Generalized Problem Formulation
5.1.1 Forward Models
According to DECD model ofMEG signals (Section 1.3.2) and a simple convolutional mode

(Section 3.2.1) for BOLD signal, we can summarize performeddod modeling as

Modality | Data Matrix ~ Size ~ Model Q.
fMRI F NxU F=QB Q=1qQ, |
EMEG X MxT X=GQ Q.

where Q(Q) (NxT matrix) represents the strength of the dipoles without ¢agon information
Gt = \J @y + 4, + ¢y ©(Q) BNXT matrix) contains pure orientation &, = /G, Where
i = jmod N*; B (T'xU matrix) is a circulant matrix which corresponds to the temapéittering of the
neuronal signal amplitude to reconstruct BOLD response usi@gonvolutional model (Section 3.2.1);
and G (M x3N matrix) is a lead field matrix for NEM (Section 1.3.2). In theseaof fixed known
orientations of the dipoles representing neuronal geoesat single projection of the strength to that

direction is used, thu§ = Q.

5.1.2 Objective Function
The objective of the presented multimodal analysis is tamede a temporally and spatially superior

modalityQ which is used to reconstruct bakhandF using described forward models. The reconstructiol

1Here and further we will us¢ € {1..3N} and corresponding € {1..N}, s.t. j € {i,i + N,i + 2N} for the
projections of theth dipole on 3 axis (see Section 1321625 for more details)

a7

aims to minimize the residuals between the empirical andhstcacted vaIuesX(Q) -X andF(Q) —F.
Because these signals are of different dimensionality, oredsn different units and subject to different
noise levels, it is appropriate to define scaled residnal$Q) = % andAp(Q) = % if the
noise is uncorrelated and has the same variance acrosssensmdyy.

By introducing atrade-off parameterv between the quality of fit of two acquired modalities, the
regularizationparameten, and regularization functiofi(Q), objective function (1.6) can be extended for

multimodal case as

&(Q) = [[Ax(Q)l + al|Ar(Q)[l: + AC(Q) (5.1)

wherel € {1,2} is the norm to define specific error cost function &) can incorporate some other
constraints such as the smoothness of the solution in tinie space, minimal norm of the solution

requirement, etc.

5.2 L, Error, Variable Orientation — Gradient Descent
In the case of = 2, cost function (5.1) is represented as a sum of squaredsaver the residuals. Taking

its derivative leads to a simple gradient descent rule

0€,(Q)

Q.=Q -1 59 .wherey is a learning rate (5.2)
96(Q) _ 0Ax(Q) | 9Ar(Q) . 9C(Q)
Q ~ 0Q +a 7Q +A 2Q (5.3)
Ix(Q) _yarix g P2EQ -
bq = 26"(X-GQ). =g _2@*((F QB)B ) (5.4)
where- x - operation corresponds to element-wise product of two neric
5.3 L, Error, Fixed Orientation
In the case of quadratic error and fixed orientatiGn= Q) derivative% simplifies
aAF(Q) PN A T
5q = 25Em(Q) <(F —QB)B ) ‘ (5.5)

Instabilities in optimization brought byign(z) can be reduced by using some smooth function whic

approximates it well€.g.squashed hyperbolic tangent function).
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Itis very appealing to reformulate (5.4) in a presence okt@intQ > 0

IAx(Q) _ OAr(Q) _
g - 2GT(X - GQ), —q - 2(F - QB)B”, (5.6)

and if no additional constraints are imposed’(Q) = 0), thenQ can be found as a solution of
0£(Q) _ 0Ax(Q) | 9Ar(Q)

0Q oQ oQ
G'(X -GQ)+a(F-QB)B” =0,

=0

G'GQ+Q(aBB") — (aFB" + G"X) =0,

known as Sylvester equation, for which efficient solvers exBtit presence of the constrai@ > 0

forbids us from using this simple formulation.

5.4 L, Error Minimization - LP Minimization

Using defined abbreviations we formulate an initial LP probé&siollows

X+Ax =X Constraints (5.7)
F+Ap=F (5.8)

Gi; >0 Region (5.9)

& = ||Ax|l + al|Arls Objective , (5.10)

whereax is used to check different trade-offs between two modalétgesell as to normalize their influence
in the optimization criteria.

Next we redefine eacfx|, which are present in computation 6f(5.10) andg;; (5.12), in a form
suitable for LP as shown in Appendix B. These transformatioad te a side effect, namely minimization
of the sum of absolute valugs;|, so we need to add another tefifiS||; to the objective function (5.10).
This side effect could be considered a desired result - tinénmiation of L, norm of the solution results

in its increased sparseness.

Transformation to LP
Itis required to agree on the order of how any 2D array is “ld€d” into a 1D sequence. Each unfolded

matrix X is presented as a vectiirand it is decomposed row-wise - rows compose unfolded matrix whe
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taken sequentially. So fd® 3N xT matrix, which is the argument of optimization we want to obtain
we get vectorQ 3NT x1 where the order of dimensions growth within the vector is- sensor —

orientatior{axis), therefore time is the fastest growing dimension.

E/MEG Equation in LP form

We can represent (5.7) in a form suitable for LP using the Kekeeproduct

(GeIr)Q=X (5.11)

wherel, is the identity matrix of size/ x Z.

FMRI Equation in LP form
First we need to encode the definition@finto an LP constraint matrix using an approximation destib

in Appendix B.2,

Q=1Q,

5

Q,l:1Q.)): (5.12)

wherel(-) is an LP approximation of thé, norm.

In a similar to (5.11) way we represent the prod@d8 in a form suitable for LP

F=(Iy®B")Q (5.13)

Final LP form
Finally we group all the constraints and the objective fumttiogether into an extended LP canonical

form,
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(GeIr)Q+Ag=X (5.14)

(I; @ B)Q+Ap =F (5.15)

Q-1(1Q.l,1Q,,1Q.) =0 (5.16)

Q>0 (5.17)

& =|Ax|l + af|Ap|lL +~IS])x (5.18)
5.5 Remarks

It is necessary to list restrictions and omitted factors Wwhiave to be considered in the given models
when working with real data. Due to the undetermined BOLD fMRI fadvanodel, unknown coupling
coefficient to map neuronal activation (dipole strength) to BOLD sigrga B.;/||B.||) yet to be

estimated. Approaches to consider when applying the sughewthods to real data are

e ¢ parameter can be naturally included in the formulation. Then it simply becomes yet another
argument for the optimization. Far, it is necessary to seek for other means of estimation &

following;

e normalization by matching the variances of the producedadgyand their fit residuals. This is the

simplest approach but the analysis of occurring bias issszcy;

e Bayesian approach: either to find the coefficient having makipnobability {.e. to find MAP),
or sample model space and find model average based on differesible values of the coefficient.
Bayesian approach requires specification of prior pdf of tedficient, thus can be arbitrarily biased.

Taking uniform probability would lead to a maximum likelibd solution;

CHAPTER 6

MULTIMODAL IMAGING: SIMULATION STUDY

This works every time, provided you're lucky

— Unknown soul-mate

As previously emphasized, any novel methodology has to hdatet first on the dataset with
known characteristics of the noise and of the signal of istefee. of spatio-temporal signals of the
neuronal activation in case of neuroimaging). Due to theradesef a realistic phantom study involving
covered here brain imaging modalities, it was necessariyrtolate the signal and noise conditions. This
chapter describes the protocol used to simulate the daaaggprovides analysis of the results obtainec
using different localization methods including the onessented in the preceding chapter. Results of th
analysis using some conventional multimodal metheds f{MRI conditioned DECD) and., norm misfit

methods presented in the previous chapter follow.

6.1 Simulated Dataset Generation
Simulated dataset consists of an ROI region of the brain tmifosampled for possible source locations
and the corresponding simulated brain imaging signals (B#B8G and fMRI). Temporal sampling of
the source spad® was taken to be 16 [Hz], which allowed to represent simulatedomali activations as

truncated Gaussian with the deviation of 50 [ms].

6.1.1 Forward Modeling
In this study, conductivity boundaries and cortical suefaevere determined from MRI anatomy of a
template brain [30] (Fig. 6.1). MRI scan, tessellated sw$a@nd originaFMEG electrodes locations
(181 EEG and138 MEG electrodes) (Fig. 6.2) were provided along whainstormsoftware package
[106]. Realistic BEM model with 3 compartments (brain+ceréefuad, skull, scalp with conductivities
0.33, .0042, and0.33 respectively) was used to approximate the solution of thedcd EMEG problem
for the 30 sensors of eacAMEG modality which were located in the vicinity of the ROI.

“Hand area” of M1 is the area of interest for this simulationdst Therefore appropriate region
defined by239 out of 10, 000 vertices of the whole cortical surface was selected (Fig. 8/@an distance

between any two sampled source points Within5slelected ROWasm. The furthest distance between
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Nasion
Left Ear
Right Ear

Figure 6.1 3 slices of MRI with marked fiducial points (Screenshort fromiBstéorm [106])

any two points within ROI constituted7.4 mm. Region of interest (“Hand area”) was reported to be
considerably smaller - up td8 mm [39] and lie around th& shaped “knob” covered by the selected ROI
(Fig. 6.3).

Space around ROI cortical area was sampled with the resolotidfmm] to generat&95 possible
source locations, which also constitute a modeling spaci#Bi signal (Fig. 6.4) and serve as locations
for dipoles generating/MEG signals.

Each possible source location was characterized with tleat@tion of a normal of a closest vertex
on the surface of ROI. Such orientation was used for forwardetiog of EMEG signals using pre-

computed BEM models.
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Figure 6.2 MEG (grey) and EEG (yellow) electrodes locations along witbsélated brain volume
into 4 boundary structures: (listed from the inside out) efgitey matter boundary (cortex boundary),
inner skull, outer skull, and scalp surfaces (Part of thdl sind scalp surfaces displayed transparent fo
visualization purposes. Screenshort from Brainstorm [L06]

6.1.2 Additive Noise

Simulation studies often generate additive noise contatinig clean signal using very simplistic models
such as Gaussian white noise. Because suggested fusion methoadies on spatio-temporal analysis of
the data, such noise modeling would be overly simplistidtiergoals of current study. That is why simple
Gaussian noise and realistic noise from experimental date earsidered. Realistic noise was obtainec
from the epochs of EEG, MEG and fMRI datasets collected durhegt* periods of the experiments.
Such data were hoped to bear minimal amount of the signalesonding to spontaneous neurona
activity, nevertheless careful pre-processing was requio eliminate signal components which were
caused by muscle artifacts, or had prominent localizations unlikely to be a part of instrumental or

even neurological noise. The details of carried prepracgsse covered in the Appendix D.

6.1.3 Simulation Protocol

Datasets/Activations: Source spaced) consists 0895 possible source locations during 1 [sec] and at ¢
sampling rate of 16 [Hz]EMEG signals were simulated accordingly for a given periodrogti.e.
1[sec]). FMRI signal, due to its time-lagged hemodynamipoase was modeled at a temporal
sampling rate of 1[Hz] (TR=1[sec]) for the duration of 10 [Jecs

Totally 5 datasets were generated. Fitstatasets consist of non-overlapping spatially activation
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Figure 6.3 Contralateral to the right hand central sulcus along with preg post-central gyri (area in
red) were selected as the region of simulated neuronal dotigafaking the response to motor actions.
The choice of such region is directed by different imaginglis of detected elicited neuronal response
in response to motor actions of the hand and/or fingers [42], 1Screenshort from Brainstorm [106])
i.e. when only a single activation could appear in a voxel at somdam moment in time. These
datasets have different number of active sources randaspstially and temporally) chosen to be
active: [1, 10, 100, 895] sources. The last dataset hes randomly activated locations with a
following within 100-300 [ms] second activation at the samatisp locatiord. Activations in all
cases were modeled by a truncated1(8% of area) Gaussian with the deviation of 50 [ms]. Eact
dataset ha80 epochs which differed by the randomly chosen source temporal antapocations

confirming dataset requirements;
E/MEG type: Both EEG and MEG signals are considered (one at a time) foutierf with fMRI signal;

Noise Type: Two types of noise are used: empirical (as described in @eétil.2) and Gaussian white

noise;

Noise Level: Due to the fact that signals of interest are sparse in timeetiseno sense to characterize

noise level as the ratio between signal power and noise powars ffle amount of noise added

1Datasets  were given “codenames” NONOVERLAP1, NONOVERLAP10, NONOVERLAP10(
NONOVERLAP895, and OVERLAP10 accordingly
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Figure 6.4 Region of interest which includes “hand area” of M1 is a soupzes for modeled neuronal
activations

to a signal is defined in terms of the ratio between noise dewmiand maximal signal amplitude:

e = 0./ max(s). Datasets for following noise levets= [0, 0.1, 0.2, 0.4, 0.6] were generated;

Trials: For each instance of the signal, noise type, and noise Bvéfials (runs) were generated, so
the same underlying signal was contaminated with differemensamples. Further, epochs were
averaged. Such transformation reduces noise variance dmtar of+/30. That was done to boost
SNR of the acquired signals — a common practice in neuroingadimthe future, these simulated

trials will be used individually to provide statistical meass for the quality of the solution.

6.1.4 Algorithms Tested
To validate the advantage of the suggested fusion meth@inécessary to compare its performance tc
other methods established in the field. For this study wedeste norms methods (fixed and variable

orientation) against DECD methods (Section 1.3.2) where theiso at any given point in time is

Q =G'X, (6.1)

where

GT=WqG (GWoGT) L (6.2)
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DECD solutions were conditioned using a combination of thefaihg methods

Conditioning of the Inverse: Truncated SVD was used to find stable inversé @W oG ). Singular
values smaller than the projected noise variance were disdar

Gain Matrix Normalization: Two possible cases were considered: with and without colum

-1

normalization (Section 1.3.20Wq = W, = (diag (G'G)) ™ ;

Relative FMRI Weighting: Following the ideas described in Section 3.3.4, consideredalues were

[1.0, 0.5, 0.1] which correspond to 0, 50, and 90% of relative fMRI weighting.

Such range of conditioning was hoped to cover the varigbilit possible DECD solutions
conditioned or noti#, = 1.0) by fMRI. Besides that, DECD solutions with variable and fixed (tc

original) orientations were considered.

6.1.5 Results

To compare between different methods an error metric had thbsen. In the current study, quality of
the source time line reconstruction is considered to be thmegoy comparison criterion. Localization
comparison is a much wider topic and will be addressed in therdut Quality of the source signal
reconstruction is measured with a quadratic error mea$@e- Q|2 over the source locations with
present activation. Quadratic error is further normalizgdtie squared norm of the sourg€)||3 to
characterize the quality criterion as a relative amountigé energy brought into the source estimate. T
summarizeF = ||Q—Q||2/||Q||2 and thus its minimal valu& = 0 corresponds to the perfect restoration
of the sources time course. For each epoch, best resultsatifteyently conditioned (as described in the
previous section) DECD solutions was chosen.

Optimization of L, cost function (5.4) was carried out via conjugate gradierth\ailine search,
which allows to avoid the use of the Hessian which is of unfeasiifeension size for this task. A set of
a = (0.5, 1, 10] for a tradeoff betweeRWMEG and FMRI fit were used. Only the best result is reported il
the plots.

Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8, and Fig. 6.9 preseaicibmparison between the results achieve!
using FMRI conditioned DECD methods arid -Fusion method suggested in this work. Plots shov
mentioned above criteriofy for both EEMEG signals separately (each one owns a row) and with differe

types of the noise used for modeling of the signals. As it is $eBn all of the plots, novel method often
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outperforms DECD providing higher quality source signal restniction with a lighter influence of the
noise level. As expected, the increase in the error of renaet&in closely follows the increase in number
of activated sourced., method provides much better solution in the case of soupgadly overlapping
(Fig. 6.9).

Surprisingly, there is a strong difference between EEG an@Ni&sults. There is a much higher
reconstruction error of DECD estimates in case of MEG, espgdial high noise values and a large
number of activations. Such difference can possible beagxgtl by the fact that a large part of the source
space is located on the surface of pre-motor and post-mgtor\ghich means that such sources are
radially oriented to the skull surface. MEG sensitivity foraging of such sources is known to be poor
even in the cases of realistic head modeling (Section 1.ZjpinMim norm solution thus discards such
activations in favor of the minimal norm regularizationnterL, norm method doesn'’t explicitly suppress
such activations if they comply with the reconstruction ofRMsignal. In the future work, regional
sensitivity analysis will be carried out to verify such exptions. Additional simulations utilizing higher
number of sensors might reveal the other source of suchrelifte.

The nature of the added noise (Empirical vs simulated Gaujss@es not seem to affect the results
much. This fact supports the choice of Gaussian distribuftonthe creation of simulated datasets.
Nevertheless it is important to continue comparing resulth wimpirical and simulated noise, because

some other performance characteristeg (ocalization quality) might reveal the difference.
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Figure 6.5 Dataset NONOVERLAP1: Solutions comparisan, -Fusion plots are intentionally shifted

a fraction for ease of observation.
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Figure 6.6 Dataset NONOVERLAP10: Solutions comparison.
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Figure 6.7 Dataset NONOVERLAP100: Solutions comparison.

0.95

0.9

w 0.85

0.8

EEG Empirical noise

0.95

0.9

w 0.85

0.8

Noise
MEG Empirical noise

/ ~

0.75

61

EEG Gaussian noise

— — — DECD
L2-Fusion

IN

Noise
MEG Gaussian noise

Figure 6.8 Dataset NONOVERLAP895: Solutions comparison.
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Figure 6.9 Dataset OVERLAP10: Solutions comparison.

CHAPTER 7
FURTHER RESEARCH
There is no such thing as failure, only results, with some
more successful than others

— Jeff KellerAttitude is Everything, Inc.
Future work requires further analysis of the simulated taget a better control over the suggestec
novel methods, and a better understanding of noise and imgal conditions which could provide

stable source reconstruction and localization. Futurctions include

Verify L, -Fusion method on the simulated datasets. So far dnlynethods were tested on the

somatotopy simulated data (preliminary results of using-Fusion on other simulations were

reported elsewhere [63]);

Incorporate, and verify advantages of additional constsge.g.smoothness in time or in space) in

the fusion cost function;

Extend the models to handle cases of a slight spatial misakgt betweef/MEG sources and

fMRI BOLD signal activations;

Choose or devise an appropriate localization technique toa@xspatio-temporal activation

locations from the estimated source time courses;

Analyze complex activation patterns and cover wider areaidiog SMA, PMA, and SI;

Verify approaches suggested in Section 5.5 before appbyiadysis methods to empirical data.

After satisfactory results achieved on the simulated datajli make it reasonable to apply the
suggested methods to the empirical data in attempts torobiastworthy results. Thus next coarsely

grained research tasks should be taken care of

e Elaborate experiment design and acquisition protocol whiohld allow high resolution spatio-

temporal multimodal analysis;

e Estimate empirical HRF for the activati0n56i§1 the areas ofese



APPENDIX A

FREE SOFTWARE GERMANE TO MULTIMODAL ANALYSIS OF EEG/MEG/FMRI DATA

EEGForwardMEG EIIEIS/Qr/IsiG MRI f fMRI  Environment
S 8 S $ g o B o % @ E
2ss58=s00Et¢cs 2 30 £33 3
Package ) % & ) % & 8 % & ,_% » o L& % g E g g
Brainstorm [106] v v Vv v v = v
o, NeuroFEM [129)/Pebbles / v vV vV vV VvV VvV V v v
9 BioPSE [18]/SCIRUN [160] / +/ +/ v v = v =V
Brainvisa/Anatomist [146] 4 v v v v vV
FreeSurfer [46] Vv v vV v v v
Surefit [180] v v v v v
Brainsuite [163] v v vV v
EEG/MEG/MRI tibx [192] +/ Vi Vv Y = === v Vv Vv
MEG tlbx* [124] v v Vv v v vV VY
EEGLAB/FMRILAB [40] v v

fAn extensive MR segmentation bibliography is available online [131].

fPOSIX includes all versions of Unix and GNU/Linux. Most POSIX packages listed use X Windows for their glapltjout.

*Matlab Toolbox.
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APPENDIX B

CANONICAL FORM FOR LP

Above we have freely used the minimum operator in formula like- min(b, ¢), the absolute value
functiony = |z|, and other constructs not allowed in the canonical form ohedr program. In this
section we describe a general technique for reducing a sysfténear equalities and inequalities which
include minimization of the.; norm, | - | andmin(-, -) operators, along with a linear objective function,

into a linear programming problem in standard canonicahfor

B.1 Absolute Value
Commonly accepted way to deal with absolute value fungfien|z| in LP is to represent as a difference
of two non-negative numbers, with| as their sum. Minimization of the sum would force one of them t

become), with the other corresponding to|:

r=at —a" (B.1)
o] = 2* +27 ©2)
t >0 (B.3)
= >0 (B.4)

while minimizing |z|

B.2 Minimal Value

To obtaina = min(b, c) we first relax it to

a < min(b, ¢), (B.5)

Inclusion of a—a term in the objective function will lead to maximization @thus achieving the

necessary equality. Equality (B.5) can be easily repredenta form suitable for LP
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a—b<0

a—c<0

Approximation of I, norm in LP
The magnitude of a dipole with moment vectar= (z,y, z) is ||m|| = /2% + 4 + 22. We assume that
FMRI readings are related linearly to dipole magnitudes. rifeoto fit this into an LP framework, we
need a way to approximate= ||m|| within an LP. Our solution is to note that theén(-, -) and modulus
| -] functions can be used freely in a LP and then reduced to cealofurm using the transformation

described below. For our method, I8} be a set of rotation matrices. To approximgta|| we let

e; = ||R;m||; e= min € (B.6)

where|| - ||; denotes thé, norm. These can simply be added to the linear programminigigarg
enforcing the relation ~ ||m||. We can increase the number of matrices in the set to imphevadcuracy

of this approximation, at the expense of computationaliefiicy.



APPENDIX C

3D RIGID TRANSFORMATION VIA QUATERNIONS

P
To find the minimum of the squared error functiofR, v) = Z(X,M — xP7M)2 (Section 3.1.1), it is

i
i

necessary to calculate a principal eigenvector

tr(%) AT
r = max_eigenvector

A T4+ — (D)1
where
(Z-%T)y

.
X=F2 % D= gy =) =)

i i

A = (E — 27)31

Sl

(Z-%")p,

The eigenvector can be assumed to be normalized (unit length). Regarded aatergjon,r =

[ro, 1,72, TS]T uniquely defines the rotation. This can be converted inton@eational rotation matrix

7‘3 +ri—r2— r§ 2(riry — 1or3) 2(ryr3 + 1o12)
R = 2(riry+ror3) ey —rl—r: 2(rors — 1ro11)
2(rr3 — rora) 2(ror3 4+ 111) 24l —r? 2

The translation vector is then= x* — Rx”.
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APPENDIX D

DATA PREPROCESSING TO OBTAIN EMPIRICAL NOISE SAMPLES

Raw EEG and fMRI data collected during rest periods had to b@meessed before being added to the
generated signal. MEG noise signal was taken from the phastody, thus by definition it didn’t contain
any artifacts and only instrumental noise. That gives MEGitazhal advantage and first two steps of

preprocessing were omitted for MEG signal. The following pssing took place:

Filtering To prepareEIMEG signals for the next preprocessing stage, FMEG (Fig. D.1) data was
filtered using bandpass filter to allow only2 — 30 Hz frequency components. Similar signal
preprocessing is usually carried in conventional brairgimg data analysis to eliminate frequencies
irrelevant to the design and to the expected neuronal regperg. DC components, slow drifts,

power-line background).

Irrelevant features removal ICA (Infomax [16]) has been applied [139] @MEG data to extract the
sources which are different from simple noisy componentsratiter correspond to some electro-
physiological activity €.g. muscle noise, eye movements) which is not of interest of thengi
study. Visual inspection of the components time courseg. (Bi3) and projected topographies
(Fig. D.4) allows to identify the components which are artéadiie to electro-physiological activity
(components 1, 4), relevant for the events of the experirf@rnponents 8, 9, 20, 22) or just
sharply localized (components 11, 19), thus they are highpyrobable to be noise components for

our purpose;

Downsampling To prepareEIMEG noise signals for down-samplingMEG time-trends were filtered
using bad-pass filter to permit only5 — 8 Hz frequency components. Upper limit 8Hz was set
to match the temporal resolution of the modeling environinefisamples/sec). fMRI time series

was high pass filtered 0.1 Hz to remove present time trends;

Normalization To gain control of the amount of noise added to the simulaiguiss, all noise signals
were normalized to have unit variance (Fig. D.5). AlthoughaotedEMEG noise signal indeed

has distribution close to Gaussian (Fig. D.6), its temporatatteristics show a prevalence of lower

69



70 71

frequency components (Fig. D.7). To reduce impact of caiicela across channels, noise samples

were taken with arbitrary temporal delay varying across ssnso Al N\j \M\J WU
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Figure D.3 ICA analysis allows to separate the multichannel signal inéodomponents such as muscle
artifacts (top component), electrical line noise, slomttg etc.
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Figure D.4 Using the separation matrix obtained during ICA it is possibleisualize influence of each
component on each sensor, thus creating topographic maps.

© N UAWN R

Scale

Figure D.5 Empirical EEG noise samples after all preprocessing stages
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Data Histogram and Fitted Normal PDF QQ Plot (Data vs Standard Normal)
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Variance: 1
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Figure D.6 Data histogram (top left), QQ plot to the matching Gaussianr{tgg) and statistics (bottom)
of the noise components extracted from the empirical EE@. dat
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Figure D.7 Power spectrum of extracted empirical noise shows preserglations at lower frequencies
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