
ABSTRACT

BOOSTED SPATIAL AND TEMPORAL PRECISION IN FUNCTIONAL BRAIN IMAGING
VIA MULTIMODAL ANALYSIS

by
Yaroslav Halchenko

Localizing neuronal activity in the brain, both in time and in space, is a central challenge to progress in

understanding brain function. Non-invasive functional brain imaging has become an important tool used

by neurophysiologists, cognitive psychologists, cognitive scientists, and other researchers interested in

brain function. In the last five decades the technology of non-invasive functional imaging has flowered, and

researchers today can choose from EEG, MEG, PET, SPECT, MRI, and fMRI. Each method has its own

strengths and weaknesses, and no single method is best suitedfor all experimental or clinical conditions.

EEG and MEG each provide data with high temporal resolution (measured in milliseconds), but limited

spatial resolution. In contrast, fMRI provides good spatialbut relatively poor temporal resolution.

Because of the inadequacies of individual techniques, thereis increased interest in finding ways to

combine existing techniques in order to synthesize the strengths inherent in each. Number of techniques

refining EEG and MEG analysis by exploring the data from MR modalities (MRI, fMRI) has been

developed in order to increase localizationprecision. Demonstrated localizationaccuracyremains a

distant goal confounded by the lack of ground truth in any realistic experimental multimodal protocol and

the lack of a complete model of the BOLD signal.

The goal of this dissertation is to show that it is possible toobtain reliable estimates of neuronal

activity at superior spatio-temporal resolution by combining EEG/MEG with fMRI data whenever forward

models of the signals are appropriate to describe the data interms of underlying neuronal processes. The

proposal surveys various aspects of uni- and multimodal imaging, discusses obstacles confronted with on

the way to reliable multimodal methods, proposes novel approaches for multimodal imaging, describes a

chosen neuroimaging problem to persuade with the suggested methods, and, finally, presents preliminary

results on the simulated data.
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INTRODUCTION

A great challenge in any research of brain functioning is to have non-invasive1 means to asses the

characteristics of neuro-physiological processes insidethe brain at a fine temporal and spatial resolution.

Miscellaneous assumptions of the nature of neuronal signals let neuronal activity to be measured and

modeled as biomedical signals which can be registered by several types of non-invasive brain imaging

techniques such as electroencephalography (EEG), magnetoencephalography (MEG), nuclear magnetic

resonance (NMR) imaging (MRI)2, positron emission tomography (PET), near-infrared spectroscopy

(NIRS), and others.

All of the mentioned modalities could be brought into two categories: passive and active. Passive

methods (EEG and MEG) try to register changes in the ambient environment which are caused by

neuronal processes inside the brain. Active methods (such asMRI, PET and NIRS) create a controllable

environment which changes under underlying neuronal and possibly other related physiological

processes. Therefore most of the time they do not capture results of neuronal activity directly, but rather

register changes caused by it,e.g.consumption of the contrast agents, blood oxygenation or change of

blood flow. Captured brain signals by either passive or activemodalities are usually non-stationary

signals distorted by noise and interferences. Moreover they possess characteristics specific to the

technique (modality) used to acquire it, so it is crucial to have a clear understanding of their nature to

perform advanced signal analysis.

EEG has been widely used in research and clinical studies since the mid-twentieth century. Although

Richard Caton (1842–1926) is believed to have been the first to record the spontaneous electrical activity

of the brain, the term EEG first appeared in 1929 when Hans Berger,a psychiatrist working in Jena,

Germany, announced to the world that “it was possible to record the feeble electric currents generated

on the brain, without opening the skull, and to depict them graphically onto a strip of paper.” The first

SQUID-based MEG experiment with a human subject was conducted at MIT by Cohen [31] after his

successful application of Zimmerman’s SQUID sensors to acquire a magneto-cardiogram in 1969. EEG

and MEG are closely related due to electro-magnetic coupling, and termE/MEG will be used to refer

generically to either EEG, MEG, or both altogether. Although EEG and MEG are related, there are

1From WordNet (r) 2.0 (August 2003) [wn]: noninvasive adj : relating to a technique that does not involve puncturing
the skin or entering a body cavity [ant: invasive]
2The term MRI generally substituted NMR so that the public could more easily adopt a term for an imaging modality
without the word ”nuclear” in it

1
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some subtle differences which will be outlined further in the text. BothE/MEG provide high temporal

resolution (measured in milliseconds) but have a major limitation: the location of neuronal activity can

be hard to pin-point with confidence. That is because such modalities acquire data which is created as

a super-imposition of electromagnetic fields outside of thehead which were caused by the brain signals;

therefore in order to obtain characteristics of the original neuronal activations the inverse problem has to

be solved. Localization of neural activity fromE/MEG data is usually called aselectromagnetic source

imaging(EMSI) and has been a challenging area of research for the last couple decades.

EEG MEG MRI

a

b

Figure 1 Non-invasive functional brain imaging equipment: from simple EEG to expensive MR.a.
Equipmentb. Typical Data

Opposed toE/MEG, MRI modality has a natural capability to providein vivoview on brain structure

and function. Nuclear Magnetic Resonance (NMR) was independently discovered by Felix Bloch and

Edward Purcell in 1946, so they both received a Nobel Prize in Physics in 1952. Only in 1970, Raymond

Damidian discovered that the structure and abundance of water in the human body is the key to MR

imaging (MRI). It was Paul Lauterbur in 1973, however, who implemented the concept of tri-plane

3

gradients used for exciting selective areas of the body (Gx, Gy, and Gz). P. Lauterbur along with Peter

Mansfield were awarded a Nobel Prize in Physiology or Medicine in 2003 for the invention of MRI, which

made a huge impact on medical imaging.

Since the invention time, MRI techniques evolved. Nowadays image intensity observed in MR

images can be determined by various tissue contrast mechanisms such as proton density, T1 and T2

relaxation rates, diffusive processes of proton spin dephasing, loss of proton phase coherence due to tissue

magnetic susceptibility variations. Although MRI is capableof detecting transient or subtle changes in

the magnetic field in the cortical tissue caused by neuronal activation [19, 196], direct application of MRI

to capture functional activity remains limited due to a verylow signal-to-noise ratio (SNR) which is why

MRI is often labelledanatomical. Its applicability for functional studies was not revealedfor a while.

It was toward the end of the 19th century, when Charles Roy and Charles Sherrington [151] provided

the first evidence supporting the connection between neuronal activity and cerebral blood flow. In 100

years, after MRI technique had received much of appreciationfor anatomical studies, Ogawa et al. [136]

showed that MRI can reflect blood deoxygenation using T2⋆contrast. Such finding laid down a framework

for functional brain imaging using MRI [17, 137, 150] by capturing blood oxygenation level-dependent

(BOLD) signal without necessity to use any reactive agents, thusmaking functional MRI (fMRI) the first

truly non-invasive functional brain imaging modality whichbears rich spatial information. Due to the

deliberateness of the hemodynamics in comparison to the neuronal activation time course, BOLD fMRI

time resolution is coarse but acceptable for many types of studies.

Problem Statement

Any single technology mentioned above is yet to become the best choice for all functional brain imaging

necessities. High temporal resolution ofE/MEG modalities is crucial in many event-related experiments

and it cannot be achieved using BOLD fMRI, which delivers superior spatial resolution, which, in turn,

cannot be reliably achieved usingE/MEG. Therefore it is beneficial to have methodology that consolidate

the information obtained from different brain imaging modalities. Such information integration is hoped

to provide consistent and reliable localization of the neuronal activity with higher spatial and temporal

precision that cannot be achieved using any of the existing modalities alone.

The main obstacle in the development of multimodal methods involving fMRI nowadays seems

to be the absence of a universal model for hemodynamics, wherethe neuronal activation is the primary
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input factor. Simplistic models can be used in particular instances of multimodal analysis where they are

supported by the empirical evidence from simple experiments.

Due to the difficulties in assessing ground truth of a combinedsignal in any realistic experiment—a

difficulty further confounded by lack of accurate biophysical models of BOLD signal, any fusion problem

has to be tackled with caution. Reported progress on simple experiments where there is a small number

of isolated focal sources of activity which are consistentlypresent in all relevant modalities, and phantom

studies can already provide basic test-ground to check the validity of the developed fusion methods.

To summarize, now it seems to be the right time for the development of fusion methods which are

comprising empirically supported models or are flexible enough to incorporate future elaborated models

of the BOLD response. A convincing demonstration of increasedaccuracy using multimodal integration

for a complex protocol would constitute a major success in the field.

Objectives and Scope of the Work

The current work addresses the problem stated: developmentand validation of a multimodal functional

brain imaging technique to gain intrinsic advantages of each used modality. Brain imaging experiment

(motor somatotopy) is chosen to comply with the requirementsfor multimodal analysis which is

formalized in the thesis. In the present work few different means to perform multidimensional

regression to merge signals fromE/MEG and fMRI are approached (non-linear optimization, Linear

Programming, Sylvester equation solvers). Further, the technical and methodological difficulties of

fusing heterogeneous signals are highlighted and explored. At the end, the hope is thatcorrect fusionof

multimodal data will allow previously inaccessible spatiotemporal structures to be visualized and

formalized and thus eventually become a useful tool in brainimaging research.

Organization

Due to the fact, that source localization techniques used in EMSI served as a starting point for subsequent

multimodal analysis, the initial focus concerns reviewing mathematical approaches for solving the

localization problem inE/MEG. Thus, Chapter 1 highlights popular methods, formulates canonical

problems of E/MEG source localization, and describes how they have been attacked by various

researchers.

5

In order to obtain multimodal data, is it important to keep inmind obstacles on the way to perform

truly multimodal experiment. Chapter 2 addresses the problems which are inherent in concurrent

multimodal experiments due to the interference between signal acquisition technologies used inE/MEG

and MRI.

Chapter 3 covers existing brain imaging techniques which employ multiple modalities. The review

starts with the description of benefits achieved by using anatomical MR modalities which do not carry

any functional (temporal) information but nevertheless crucial in the fusion process due to their high

spatial resolution. In particular, it is discussed how anatomical MRI can be combined with existing EMSI

techniques in order to increase the localizationprecisionwithout introducing any additional functional

information. Then, the most recent and promising ways in which these signals can be combined with

fMRI are documented. Specifically, attention is paid to correlative analysis, decomposition techniques,

equivalent dipole fitting, distributed sources modeling, beamforming, and Bayesian methods.

Limited knowledge of BOLD fMRI signal restricts the set of brain imaging experiments which can

be successfully and reliably analyzed using multimodal methods. Chapter 4 motivates and presents the

choice of suitable brain imaging experiment, which is suggested to be used as a validation of the introduced

multimodal methods, which are presented in Chapter 5. To verify plausibility of the new suggested

methods, they are probated on the simulated data with known characteristics. Chapter 6 overviews details

of the simulated dataset generation and discusses analysisresults using new and some existing multimodal

imaging methods.

Finally, Chapter 7 gives a brief conclusion and drafts a plan of future research to further support

the thesis and complete this dissertation. Throughout the manuscript a consistent and complete set of

mathematical formulations that are stand alone is provided, together with appropriate context for this

notation into existing literature.



CHAPTER 1

UNIMODAL SOURCE LOCALIZATION

The goal of physicists is to find a use for every branch of

mathematics. The goal of mathematicians is to invent a new

field of mathematics that has absolutely no practical use

– Unknown Professor
fMRI became a very popular tool for brain imaging due to its high spatial resolution. A vast amount

of methods has been developed to achieve reliable spatial localization of neuronal activity, or to be exact,

of its secondary effects such as blood flow (perfusion) or oxygenation (see [98] for the review of existing

methods). In turn,E/MEG signals have no definite solution to gain reliable spatiallocalization. Therefore

following section covers the specifics ofE/MEG signals, the premises for conjointE/MEG analysis, and the

EMSI techniques which have been adopted later for use in multimodal analysis with fMRI data.

1.1 EEG and MEG: Specifics

The theory of electromagnetism and Maxwell’s equations, under the assumption of quasi-stationarity1,

theoretically defines the relationship between observed magnetic and electric fields induced by the ionic

currents generated inside the brain (see [113, 127, 138] formore information about the biophysics of

E/MEG signals).

The similar nature of the EEG and MEG signals means that many methods of data analysis are

applicable to bothE/MEG modalities. Although the SNR ofE/MEG signals have improved with

technological advances, and some basic analysis has been performed by experts on rawE/MEG data via

visual inspection of spatial signal patterns outside of thebrain, more advanced methods are required to

use data efficiently. During the last two decades manyE/MEG signal analysis techniques [121] have been

developed in order to provide insights on different levels of perceptual and cognitive processing of human

brain: ERP (event related potential) in EEG and ERF (event related field) in MEG, components analysis

(PCA, ICA, etc.), frequency domain analysis, pattern analysis, and single-trial analysis to name the few

[83, 173, 175],etc.Source localization techniques were first developed for MEG because the head model

1A signal is quasistatic if it does not change its parameters in time. The non-stationary term present in theE/MEG
physical model is relatively small and can be considered zero in the range of signal frequencies which are captured
by E/MEG. See [64] for a more detailed description.
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required for forward modeling of magnetic field is relatively simple. Source localization using an EEG

signal has been difficult to perform since the forward propagation of the electric potentials is more

complicated. However, recent advances in automatic MRI segmentation methods together with advances

in forward and inverse EEG modeling, have made EEG source localization plausible.

The theory of electromagnetism also explains why EEG and MEG signals can be considered

complementary, in that they provide different views on oftenthe same physiological phenomenon

[32, 64, 113, 194]. On one hand, often accented difference is that MEG is not capable of registering the

magnetic field generated by the sources that are oriented radially to the skull surface in the case of

spherical conductor geometry. On the other hand, MEG has the advantage over EEG in that the local

variations in conductivity of different brain matter (e.g.white matter, gray matter) do not attenuate the

MEG signal much, whereas the EEG signal is strongly influencedby the variations in conductivities of

different types of brain matter and of the skull in particular [138]. The orientation selectivity, combined

with the higher depth precision due to homogeneity, make MEG optimal for detecting activity in sulci

(brain fissures) rather than in gyri (brain ridges). In contrast, a registered EEG signal is dominated by the

gyral sources close to the skull and therefore more radial toits surface. Yet another crucial difference is

dictated by basic physics. The orthogonality of magnetic and electrical fields leads to orthogonal maps of

the magnetic field and electrical potential on the scalp surface. This orthogonality means that an

orthogonal localization direction is the best localization direction for both modalities [32, 114]. These

complementary features of the EEG and MEG signals are what make them good candidates for

integration [12, 38]. The conjointE/MEG analysis has improved the fidelity of EMSI localization, but has

not entirely solved the problem of source localization ambiguity. It is the reduction of this remaining

ambiguity where information from other brain imaging modalities may play a valuable role.

It is worth noting another purely technical advantage of MEGover EEG: MEG provides a reference-

free recording of the actual magnetic field. Whenever EEG sensors capture scalp potentials, a reference

electrode must be used as a ground to derive the signal of interest. A reference signal chosen in such a way

can be arbitrarily biased relative to the EEG signal observed even when no neuronal sources are active.

The unknown in an MEG signal obtained using SQUID sensors, is just a constant in time offset—the DC

baseline. This baseline depends on the nearest flux quantum for which the flux-locked loop acquired lock

[187, pg. 265]. Although the choice of a reference value in EEGand the DC line in MEG do not influence

the analysis of potential/field topographic maps, they do impact inverse solution algorithms which assume



8

Figure 1.1 The international 10-20 EEG system seen from (A) left and (B) above the head. A = Ear
lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar, O = occipital.
(C) Location and nomenclature of the intermediate 10% electrodes, as standardized by the American
Electroencephalographic Society. (Borrowed with permissionfrom [113])

9

Figure 1.2 From the EEG signal it is possible to differentiate alpha (a), beta (b), delta (d), and theta (Q)
waves as well as spikes associated with epilepsy. (Borrowed with permission from [113])
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zero net source in the head,i.e.zero baseline. In general, the simple average reference across the electrodes

is used and it has been shown to be a good approximation to the true reference signal [121, sec. 2.2].

Even if the reference value (baseline) is chosen correctly,both conventional EEG and MEG face

obstacles in measuring the slowly changing DC component of thesignal in the low frequency range

(f < 0.1 Hz). In the case of EEG the problem is due to the often used coupling of the electrodes via

capacitors, so that any DC component (slowly changing bias) ofthe EEG signal is filtered out. That

leaves the researcher with non-zero frequency components ofthe signal, which often correspond to the

most informative part of the signal as in the case of conventional ERP or frequency domain analysis. The

DC-EEG component can be registered by using sensors with directcoupling and special scalp electrodes

that are gel filled to eliminate changes of electrical impedance at the electrode-skin interface which

can cause low frequency noise in the EEG signal. Although the MEG system does not require direct

contact between sensors and skin, it is nevertheless subjectto 1/f sensor noise which interferes with

the measurement of the neuronal DC fields. In the last decade DC-MEG has been methodically refined

by employing controlled brain-to-sensor modulation allowing the monitoring of low-frequency magnetic

fields. Formalized DC-E/MEG techniques make it possible to performE/MEG studies, which rely on the

shift of DC and low frequency components of the signal; components that occur, for example, during

epileptic seizures, hyperventilation, changes in vigilance states, cognitive or motor tasks.

1.2 Forward Modeling

The analysis ofE/MEG signals often relies on the solution of two related problems. Theforward problem

concerns the calculation of scalp potentials (EEG) or magnetic fields near the scalp (MEG) given the

neuronal currents in the brain, whereas theinverse probleminvolves estimating neuronal currents from

the observedE/MEG data. The difficulty of solving the forward problem is reflected in the diversity of

approaches that have been tried (see [125] for an overview and unified analysis of different methods).

The basic question posed by both the inverse and forward problems is how to model any neuronal

activation so that the source of the electromagnetic field can be mapped onto the observedE/MEG signal.

Assuming that localized and synchronized primary currents are the generators of the observedE/MEG

signals, the most successful approach is to model thei-th source with a simple Equivalent Current Dipole

(ECD) qi [24], uniquely defined by three factors: location represented by the vectorri, strengthqi, and

orientation coefficientsθi. The orientation coefficient is defined by projections of thevector qi into
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L orthogonal Cartesian axes:θi = qi/qi. However, the orientation coefficient may be expressed by

projections in two axes in the case of a MEG spherical model where the silent radial to the skull component

has been removed, or even, just in a single axis if normality to the cortical surface is assumed. The ECD

model made it possible to derive a tractable physical model linking neuronal activation and observed

E/MEG signals. In case ofK simultaneously active sources at timet the observedE/MEG signal at the

sensorxj positioned atpj can be modeled as

x̂j(ri,qi, t) =
K

∑

i

G(ri(t),pj) · qi(t) + ǫ, (1.1)

whereG is a lead fieldfunction which relates thei-th dipole and the potential (EEG) or magnetic field

(MEG) observed at thej-th sensor; andǫ is the sensor noise. In the given formulation, functionG(ri(t),pj)

returns a vector, where each element corresponds to the lead coefficient at the locationpj generated by

a unit-strength dipole at positionri(t) with the same orientation as the corresponding projection axis of

θi. The inner-product between the returned vector and dipole strength projections on the same coordinate

axes yields aj-th sensor the measurement generated by thei-th dipole.

The forward model (1.1) can be solved at substantial computational expense using available

numerical methods [147] in combination with realistic structural information obtained from the MRI data

(see Section 3.1). This high computational cost is acceptable when the forward model has to be

computed once per subject and for a fixed number of dipole locations, but it can be prohibitive for dipole

fitting, which requires a recomputation of the forward model for each step of non-linear optimization. For

this reason, rough approximations of the head geometry and structure are often used:e.g.best-fit single

sphere model which has a direct analytical solution [199] or the multiple spheres model to accommodate

for the difference in conductivity parameters across different tissues. Recently proposed MEG forward

modeling methods for realistic isotropic volume conductors [132, 133] are more accurate and faster than

BEM, and hence may be useful substitutes for both crude analytical methods and computationally

intensive finite-element numeric approximations. Generally, the solution of the forward problem is

crucial for performing source localization usingE/MEG, which is the main topic of the next section.
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1.3 The Inverse Problem

1.3.1 Equivalent Current Dipole Models

TheE/MEG inverse problem is very challenging (see [13, 64] for an overview of methods.) First, it relies

on the solution of the forward problem, which can be computationally expensive, especially in the case

of realistic head modeling. Second, the lead-field functionG from (1.1) is non-linear inri, so that the

forward model depends non-linearly on the locations of activations. It is because of this nonlinearity that

the inverse problem is generally treated by non-linear optimization methods, which can lead to solutions

being trapped in local minima. In case of Gaussian sensor noise, the best estimator for the reconstruction

quality of the signal is the squared error between the obtained and modeledE/MEG data:

E(r,q) =
K

∑

i

t2
∑

t=t1

M
∑

j

(

xj(t) − x̂j(ri,qi, t)
)2

+ λC(r,q), (1.2)

whereC(r,q) > 0 is often introduced to regularize the solution,i.e. to obtain the desired features of the

estimated signal (e.g.smoothness in time, or in space, lowest energy or dispersion), andλ > 0 is used to

vary the trade-off between the goodness of fit and the regularization term.

This least-squares model can be applied to the individual time-points (t1 = t2) (“moving dipole”

model) or to a block (t1 < t2) of data points. If the sources are assumed not to change during the block

(t1,t2), then the solution with time constantqi(t) = qi is the target.

Other features derived from the data besides pureE/MEG signals as the argumentx of (1.1) and (1.2)

are often used:e.g.ERP/ERF waveforms which represent averagedE/MEG signals across multiple trials,

mean map in the case of stable potential/field topography during some period of time, or signal frequency

components to localize the sources of the oscillations of interest.

Depending on the treatment of (1.2), the inverse problem can be presented in a couple of different

ways. The brute-force minimization of (1.2) in respect to both parametersr andq, and the consideration

of differentK neuronal sources, is generally calledECD fitting. Because of non-linear optimization, this

approach works only for cases where there is a relatively small number of sourcesK, and therefore the

inverse problem formulation is over-determined,i.e. (1.1) cannot be solved exactly (E(r,q) > 0). If fixed

time locations of the target dipoles can be assumed, the search space of non-linear optimization is reduced

and the optimization can be split into two steps: (a) non-linear optimization to find locations of the dipoles,

and then (b) analysis to determine the strength of the dipoles. This assumption constitutes the so-called

spatiotemporal ECD model.

13

Two other frameworks have been suggested as means of avoiding the pitfalls associated with non-

linear optimization: Distributed ECD (DECD) and beamforming. These two approaches are presented in

detail in the next sections.

1.3.2 Linear Inverse Methods: Distributed ECD

In case of multiple simultaneously active sources, an alternative to solving the inverse problem by ECD

fitting is a distributed source model. The label Distributed ECD (DECD) will be used further in the text to

refer to this type of model. The DECD is based on a spatial sampling of the brain volume and distributing

the dipoles across all plausible and spatially small areas,which could be a source of neuronal activation. In

such cases, fixed locations (ri) are available for each source/dipole, removing the necessity of non-linear

optimization as in the case of the ECD fitting. The forward model (1.1) can be presented for a noiseless

case in the matrix form

X = GQ, (1.3)

whereG, M×LN lead fieldmatrix, is assumed to be static in time. Thej, i-th entry ofG describes how

much a sensorj is influenced by a dipolei, wherej varies over all sensors whilei varies over every possible

source, or to be more specific, every axis-aligned componentof every possible source:gjı̄ = G(ri,pj).

The vector̄ı contains indices ofL such projections,i.e. ı̄ = [i, i + N, i + 2N ] whenL = 3, and ı̄ = i

when the dipole has a fixed known orientation. Using this notation, G·,̄ı corresponds to the lead matrix

for a single dipoleqi. TheM×T matrix X holds theE/MEG data, while theLN×T matrix Q (note that

Qı̄t = qi(t)) corresponds to the projections of the ECD’s moment ontoL orthogonal axes.

The solution of (1.3) relies on finding an inverseG+ of the matrixG to express the estimatêQ in

terms ofX

Q̂ = G+X, (1.4)

and will produce a linear mapX 7−→ Q̂. Other than being computationally convenient, there is not much

reason to take this approach. The task is to minimize the error function (1.2), which can be generalized by

the weighting of the data to account for the sensor noise and its covariance structure:

E(Q) = tr
(

(X − GQ)⊤W−1
X (X − GQ)

)

, (1.5)

whereW−1
X is a weighting matrix in sensor space.
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A zero-mean Gaussian signal can be characterized by the single covariance matrixCǫ. In case of a

non-singularCǫ the most simple weighting schemeWX = Cǫ can be used to account for non-uniform

and possibly correlated sensor noise.

Such a brute-force approach solves some problems of ECD modeling, specifically the requirement

for a non-linear optimization, but, unfortunately, it introduces another problem: the linear system (1.3) is

ill-posed and under-determined because the number of sampled possible source locations is much higher

than the dimensionality of the input data space (which cannotexceed the number of sensors),i.e.N ≫ M .

Thus, there is an infinite number of solutions for the linear system because any combination of terms from

the null space ofG will satisfy equation (1.4) and fit the sensor noise perfectly. In other words, many

different arrangements of the sources of neural activationwithin the brain can produce any given MEG or

EEG map. To overcome such ambiguity, a regularization term is introduced into the error measure

Er(Q) = E(Q) + λ C(Q), (1.6)

whereλ ≥ 0 controls the trade-off between the goodness of fit and the regularization termC(Q).

The equation (1.6) can have different interpretations depending on the approach used to derive it and

the meaning given to the regularization termC(Q). All of the following methods provide the same result

under specific conditions [13, 67]: Bayesian methodology to maximize the posteriorp(Q|X) assuming

Gaussian prior onQ [11], Wiener estimator with properCǫ andCS, Tikhonov regularization to trade-off

the goodness of fit (1.5) and the regularization termC(Q) = tr(Q⊤W−1
Q Q) which attempts to find the

solution with weighted byW−1
Q minimal 2nd norm. All the frameworks lead to the solution of the next

general form

G+ = (G⊤W−1
X G + λW−1

Q )−1G⊤W−1
X . (1.7)

If and only if WQ andWX are positive definite [62] (1.7) is equivalent to

G+ = WQG⊤(GWQG⊤ + λWX)−1. (1.8)

In case when viable prior information about the source distribution is availableQp, it is easy to

account for it by minimizing the deviation of the solution not from 0 (which constitutes the minimal 2nd

norm solutionG+), but from the priorQp, i.e.C(Q) = tr
(

(Q − Qp)
⊤
W−1

Q (Q−Qp)
)

. Then (1.6) will be
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minimized at

Q̂ = G+X + (I − G+G)Qp = Qp + G+(X − GQp). (1.9)

For the noiseless case, with a weightedL2-norm regularizer, the Moore-Penrose pseudo-inverse

gives the inverseG+ = G† by avoiding the null space projections ofG in the solution, thus providing a

unique solution with a minimal second normG† = WQG⊤(GWQG⊤)−1.

Taking WQ = IN ,WX = IM andQp = 0 constitutes the simplest regularized minimum norm

solution (Tikhonov regularization). Classically,λ is found using cross-validation [57] or L-curve [66]

techniques, to decide how much of the noise power should be brought into the solution. Phillips et al.

[145] suggested iterative method ReML where the conditional expectation of the source distribution and

the regularization parameters are estimated jointly. Additional constraints can be added to impose an

additional regularization: for instance temporal smoothness [25].

As presented in (1.8),G+ can account for different features of the source or data space by

incorporating them correspondingly intoWQ andWX. Next data-driven features are commonly used in

EMSI

• WX = Cǫ accounts for any possible noise covariance structure or, ifCǫ is diagonal, will scale the

error terms according to the noise level of each sensor;

• WQ = WCS
= CS accounts for prior knowledge of the sources covariance structure.

WQ can also account for different spatial features

• WQ = Wn =
(

diag (G⊤G)
)−1

normalizes the columns of the matrixG to account for deep

sources by penalizing voxels too close to the sensors [78, 103];

• WQ = Wgm, where thei-th diagonal element incorporates the gray matter content in the area of

thei-th dipole [144],i.e. the probability of having a large population of neurons capable of creating

the detectedE/MEG signal;

• WQ = (Wa
⊤Wa)

−1, where rows ofWa represent averaging coefficients for each source [10]. So

far only geometrical [61] or biophysical averaging matrices [62] were suggested;

• WQ incorporates the first-order spatial derivative of the image [190] or Laplacian form [140].
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Features defined by the diagonal matrices (e.g.Wn andWgm) can be combined through the simple

matrix product. An alternative approach is to presentWQ in terms of a linear basis set of the individual

WQ factors,i.e.WQ = µ1Wn + µ2Wgm + · · · , with later optimization ofµi via the EM algorithm [144].

To better condition the under-determined linear inverse problem (1.4), Phillips et al. [144] suggested

to perform the inverse operation in the space of the largest eigenvectors of theWQ. Such preprocessing

can also be done in the temporal domain, when a similar sub-space selection is performed using prior

temporal covariance matrix, thus effectively selecting the frequency power spectrum of the estimated

sources.

Careful selection of the described features of data and source spaces helps to improve the fidelity of

the DECD solution. Nevertheless, the inherent ambiguity of theinverse solution precludes achieving a high

degree of localization precision. It is for this reason thatadditional spatial information about the source

space, readily available from other functional modalitiessuch as fMRI and PET, can help to condition the

DECD solution (Section 3.3.4).

1.3.3 Beamforming

Beamforming (sometimes called a spatial filter or a virtual sensor) is another way to solve the inverse

problem, which actually does not directly minimize (1.2). A beamformer attempts to find a linear

combination of the input datâqi = Fix, which represents the neuronal activity of each dipoleqi in the

best possible way one at a given time. As in DECD methods, the search space is sampled, but, in contrast

to the DECD approach, the beamformer does not try to fit all the observed data at once.

The linearly constrained minimum variance (LCMV) beamformer[181] looks for a spatial filter

defined asFi of sizeM×L minimizing the output energyFi⊤CXFi under the constraint that onlyqi is

active at that time,i.e. that there is no attenuation of the signal of interest:FkG·,̄ı = δkiIL, where the

Kronecker deltaδki = 1 only if k = i and0 otherwise. Because the beamforming filterFi for the i-th

dipole is defined independently from the other possible dipoles, indexi will be dropped from the derived

results for the clarity of presentation.

The constrained minimization, solved using Lagrange multipliers, yields

F = (G·,̄ı
⊤C−1

X G·,̄ı)
−1G·,̄ı

⊤C−1
X (1.10)
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This solution is equivalent to (1.7), when applied to a singledipole with the regularization term omitted.

Source localization is performed using (1.10) to compute the variance of every dipoleq, which, in the case

of uncorrelated dipole moments, is

νq = tr
(

(G·,̄ı
⊤C−1

X G·,̄ı)
−1

)

. (1.11)

The noise-sensitivity of (1.11) can be reduced by using the noise variance of each dipole as normalizing

factorνǫ = tr
(

(G·,̄ı
⊤C−1

ǫ G·,̄ı)
−1

)

. This produces the so-calledneural activity index

z =
νq

νǫ

. (1.12)

An alternative beamformer,synthetic aperture magnetometryor SAM [149], is similar to the LCMV

if the orientation of the dipole is defined, but it is quite different in the case of a dipole with an arbitrary

orientation. A vector of lead coefficientsgi(θ) is defined as a function of the dipole orientation. This

returns a single vector for the orientationθ of thei-th dipole, as opposed to the earlier formulation in which

theL columns ofG·,̄ı played a similar role. With this new formulation, the spatial filter is constructed

f (θ) =
1

gi(θ)
⊤
C−1

X gi(θ)
gi(θ)

⊤(CX + λCǫ)
−1 (1.13)

which, under standard assumptions, is an optimal linear estimator of the time course of thei-th dipole. The

variance of the dipole, accordingly, is also a function ofθ, specificallyνq(θ) = 1/
(

gi(θ)
⊤
C−1

X gi(θ)
)

. To

compute the neuronal activity index the original SAM formulation uses a slightly different normalization

factorνǫ(θ) = f (θ)⊤Cǫf (θ), which yields a different result if the noise variance inCǫ is not equal across

the sensors.

The unknown value ofθ is found via a non-linear optimization of the neuronal activity index for the

dipole:

θ = arg max
ϑ

νq(ϑ)

νǫ(ϑ)
.

Despite the pitfalls of non-linear optimization, SAM filtering provides a higher SNR to LCMV by bringing

less than half of the noise power into the solution. In addition, SAM filtering results in sharper peaks of

the distribution of neuronal activity index over the volume[186].
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Having computedνq andνǫ using SAM or LCMV for the two experimental conditions: passive(p)

and active (a), it is possible to compute a pseudo-t valuet̂ for each location across the two conditions

t̂ =
ν

(a)
q − ν

(p)
q

ν
(a)
ǫ + ν

(p)
ǫ

. (1.14)

Such an approach provides the possibility of considering experimental design in the analysis ofE/MEG

localization.

Unlike ECD, beamforming does not require prior knowledge of the number of sources, nor does it

search for a solution in an underdetermined linear system asdoes DECD. For these reasons, beamforming

remains the favorite method of many researchers in EMSI and has been suggested for use in the integrative

analysis ofE/MEG and fMRI which is covered in Section 3.3.5.

CHAPTER 2

MULTIMODAL EXPERIMENT PRACTICES

When you build bridges you can keep crossing them

– Rick Pitino

Obtaining non-corrupted simultaneous recordings of EEG andfMRI is a difficult task due to

interference between the strong MR field and the EEG acquisition system. Because of this limitation, a

concurrent EEG/fMRI experiment requires specialized designand preprocessing techniques to prepare

the data for the analysis. The instrumental approaches described in this section are specific to collecting

concurrent EEG and fMRI data. For obvious reasons MEG and fMRI data must be acquired separately in

two sessions. However, even when MR and MEG are used sequentially, there is the possibility of

contamination from the magnetization of a subject’s metallic implants which can potentially disturb

MEG acquisition if it is performed shortly after the MR experiment.

2.1 Measuring EEG During MRI: Challenges and Approaches

Developing methods for the integrative analysis of EEG and fMRI data is difficult for several reasons, not

the least of which is the concurrent acquisition of EEG and fMRIitself has proved challenging. The nature

of the problem is expressed by Faraday’s law of induction: a time varying magnetic field in a wire loop

induces an electromotive force (EMF) proportional in strength to the area of the wire loop and to the rate

of change of the magnetic field component orthogonal to the area. When EEG electrodes are placed in a

strong ambient magnetic field resulting in the EMF effect several undesirable complications arise:

• Rapidly changing MR gradient fields and RF pulses may induce voltages in the EEG leads placed

inside the MR scanner. Introduced potentials may greatly obscure the EEG signal [77]. This kind of

artifact is a real concern for concurrent EEG/MRI acquisition. Due to the deterministic nature of MR

interference, hardware and algorithmic solutions may be able to unmask the EEG signal from MR

disturbances. For example, Allen et al. [4] suggested an average waveform subtraction method to

remove MR artifacts which is effective in case of deterministic generative process of a signal [155].

However, it is important to note that time variations of the MR artifact waveform can reduce the

success of this method [34, 35]. The problem can be resolved through hardware modification that

19
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increases the precision of the synchronization of MR and EEGsystems [5] or during post-processing

by using precise timings of the MR pulses during EEG waveformaveraging [35]. Other techniques

that have been proposed to reduce MR and ballistocardiographic artifacts include spectral domain

filtering, spatial Laplacian filtering, PCA (Fig. 2.1), and ICA[see 20, 49, 128, 164, 171]

• Even a slight motion of the EEG electrodes within the strong static field of the magnet can induce

significant EMF [68, 94]. For instance, native pulsatile motion related to a heart beat yields a

ballistocardiographic artifact in the EEG that can be roughly the same magnitude as the EEG signals

themselves [55, 77]. Usually such artifacts are removed by the same average waveform subtraction

method, where the waveform is an averaged response to each heartbeat.

• Induced electric currents can heat up the electrode leads topainful or even potentially dangerous

levels, such as to the point of burning the subject [107]. Current-limiting electric components

(resistors, JFET transistors,etc.) are usually necessary to prevent the development of nuisance

currents which can have direct contact with subject’s scalp. Simulations show the safe power range

that should be used for some coil/power/sensors configuration to comply with FDA guidelines [6].

Another concern is the impact of EEG electrodes on the qualityof MR images. The introduction of

EEG equipment into the scanner can potentially disturb the homogeneity of the magnetic field and distort

the resulting MR images [77, 105]. Recent investigations show that such artifacts can be effectively

avoided [89] by using specially designed EEG equipment [55]: specialized geometries, and new “MR-

safe” materials (carbon fiber, plastic) for the leads. To test the influence of a given EEG system on fMRI

data, a comparison of the data collected both with and without the EEG system being present, should

be conducted. Analysis of such data usually demonstrates thesame activation patterns in two conditions

[105], although a general decrease in fMRI SNR is observed when EEG is present in the magnet. A

correction to the brain matter conductivities (which are used for forwardE/MEG modeling) for the Hall

effect finds the following first-order correction to be negligible: σH = 4.1 × 10−8σ for B = 1.5 T [21].

2.2 Experimental Design Limitations

There are two ways of avoiding the difficulties associated with collecting EEG data in the magnet: (1)

collect EEG and MRI data separately, or (2) use an experimental paradigm that can work around the

potential contamination between the two modalities. The decision between these two alternatives will
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Figure 2.1 EEG MR artifact removal using PCA. EEG taken inside the magnet (top); EEG after
PCA-based artifact removal but with ballistocardiographic artifacts present (center); EEG with all artifacts
removed (bottom). After artifact removal it can be seen that the subject closed his eyes at time 75.9 s.
(Courtesy of M. Negishi and colleagues, Yale University Schoolof Medicine.)
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depend on the constraints associated with research goals andmethodology. For example, if an experiment

can be repeated more than once with a high degree of reliability of the data, separateE/MEG and fMRI

acquisition may be appropriate [73, 74, 120, 158]. In cases when simultaneous measurements are essential

for the experimental objective (e.g., cognitive experiments where a subject’s state might influence the

results as in monitoring of spontaneous activity or sleep state changes), one of the following protocols can

be chosen:

Triggered fMRI: detected EEG activity of interest (epileptic discharge,etc.) triggers MRI acquisition

[90, 104, 161, 191]. Due to the slowness of the HR, relevant changes in the BOLD signal can be

registered 4–8 s after the event. The EEG signal can settle quickly after the end of the previous

MRI block [55], so it is acquired without artifacts caused by RF pulses or gradient fields that are

present only during the MRI acquisition block. Note that ballistocardiographic and motion-caused

artifacts still can be present and will require post-processing in order to be eliminated. Although this

is an elegant solution and has been used with some success in the localization of epileptic seizures,

this protocol does have drawbacks. Specifically, it imposes alimitation on the amount of subsequent

EEG activity that can be monitored if the EEG high-pass filters do not settle down soon after the MR

sequence is terminated [75]. In this case, EEG hardware thatdoes not have a long relaxation period

must be used. Another drawback with this approach is that it requires online EEG signal monitoring

to trigger the fMRI acquisition in case of spontaneous activity. Often experiments of this kind are

calledEEG-correlated fMRIdue to the fact that offline fMRI data time analysis implicitlyuses EEG

triggers as the event onsets [155];

Interleaved EEG/fMRI: the experiment protocol consists of time blocks and only a single modality is

acquired during each time-block [21, 112]. This means that every stimulus has to be presented at

least once per modality. To analyze ERP and fMRI activations, the triggered fMRI protocol can

be used with every stimulus presentation so that EEG and MR aresequentially acquired in order to

capture a cleanE/MEG signal followed by the delayed HR [170];

Simultaneous fMRI/EEG: pre-processing of the EEG signal mentioned in Section 2.1 isused to remove

the MR-caused artifacts and to obtain an estimate of the true EEG signal. However, neither of

the existing artifact removing methods is proved to be general enough to work for every type

of EEG experiment and analysis. It is especially difficult touse such an acquisition scheme for
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cognitive experiments in which the EEG evoked responses of interest can be of small amplitude and

completely overwhelmed by the MR noise [157].



CHAPTER 3

CONVENTIONAL MULTIMODAL ANALYSIS

The average Ph.D. thesis is nothing but the transference of

bones from one graveyard to another.

– Frank J. Dobie“A Texan in England”, 1945

There is an increasing number of reportedE/MEG/fMRI conjoint studies, which attempt to gain

the advantages of a multimodal analysis for experiments involving perceptual and cognitive processes:

visual perception [105, 166, 170, 183] and motor activation[105], somatosensory mapping [87, 158],

fMRI correlates of EEG rhythms [35, 56, 101, 112, 123], arousal and attention interaction [44], auditory

oddball tasks [23, 74], passive frequency oddball [109], illusory figures in visual oddball tasks [93], target

detection [120, 126], face perception [73], sleep [75], language tasks [166, 185], and epilepsy [90–92,

100, 108, 161, 189, 191].

This section starts with an explanation of the role of anatomical MRI in multimodal experiments

followed by a description of multimodal analysis methods used in the above mentioned studies or test-

driven on the simulated data.

3.1 Using Anatomical MRI

The difference in captured MRI contrasts (proton densities (PD) or T1, T2 relaxation times) for different

types of organic tissue makes possible the non-invasive collection of information about the structural

organization of the brain. In addition, a regular gradient or spin echo EPI sequence is capable of detecting

transient or subtle changes of the magnetic field in corticaltissue caused by neuronal activation [19, 196].

However, direct application of MRI to capture functional activity remains limited due to a low signal-to-

noise ratio (SNR) which is why MRI is often labelledanatomical. The next section briefly describes the

analysis of acquired high-resolution 3D images of the brainand how obtained structural information can

be used to analyze data collected from other modalities (forother reviews see [51, 52, 135, 154]).

3.1.1 Registration of EEG and MEG to MRI

If an EEG experiment is performed inside the magnet, it is possible to “mark” [95] the location of the EEG

sensors to make them distinguishable on the anatomical MRI. Coordinates for these locations can then be
24
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found either manually or automatically [165] and will lie in MRI coordinate system. In case when MR

andE/MEG data are acquired in separate sessions, spatial registration betweenE/MEG and MRI coordinate

systems must be performed before any anatomical information can be introduced into the analysis of

E/MEG data. There are two general possible ways for performing registration between MRI andE/MEG

data: (a) registering a limited set of fiducial points or (b) aligning scalp surfaces obtained during MRI

with a digitization of the scalp duringE/MEG. Methods based on the alignment of the scalp surfaces (or

points clouds) considered to perform better than those using fiducial-points [76, 88, 97, 159], but are more

computationally demanding and rely on iterative optimization. In addition, it can be time consuming to

obtain the dense digitization of the subject’s head using a single point 3D digitizer. For these reasons

the fiducial points approach remains the preferredE/MEG/MRI registration method [for instance 95, 176].

The fiducial points method involves the alignment of a limited set of points, which have a strict known

correspondence between the two spaces, so that each fiducial point in E/MEG space with coordinates (xE
i )

has a corresponding known point (xM
i ) in MRI space. Such coupling removes the possibility of being

trapped in the local minima of the iterative surface aligning methods and makes registration simple and

fast. The precision of the derived transformation can be increased by adding more pairs of corresponding

E/MEG and MRI points. A more detailed description of the registration method using fiducial points

follows.

Locations of the fiducial points (e.g.anatomical points: nasion, inion, pre-auricular points ortragus

of the left and right earlobes, vertex; MRI-visible capsulesor even bite-bar points [1, 167]) are captured

together with the locations ofE/MEG sensors using a 3D digitizer and then matched to the locations of

corresponding fiducial points obtained from the analysis ofthe MRI for the same subject. A 3D rigid

transformation of the points from theE/MEG (xE) to the MRI coordinate system (xE→M ) can be defined

by the rotation matrixR and translation vectorv, so thatxE→M = RxE
i + v. Commonly, the quadratic

mis-registration error measure is the subject to minimization ε(R,v) =
P

∑

i

(xM
i − xE→M)2, whereP

is the number of the points. Solutions can be found with simplified geometrical formulations [193], or

iterative search optimization using Powell’s algorithm [167]. Such simplifications or complications are

not necessary because the analytical form solutions have been derived in other fields [71, 72], and they

are often used in the surface matching methods earlier discussed. For instance, quaternions (vectors in

L4) can be natively used to describe a rotation in 3D space leading to a straightforward solution of the

registration problem [71] (see Appendix C). This method is simple to implement. Its precision rapidly
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increases with the number of fiducial points, reaching the performance of surface matching algorithms

cheaply and efficiently.

3.1.2 Segmentation and Tessellation

PD or T1/T2 3D MR images can be used to segment different braintissues (white matter, gray matter,

cerebrospinal fluid (CSF), skull, scalp) as well as abnormal formations (tumors) [38, 131]. Different kinds

of MR contrasts are optimal for the segmentation of the different kinds of head and brain structures. For

instance, PD-weighted MRI yields superior segmentation of theinner and outer skull surfaces because

bones have much smaller water content than brain tissue, making the skull easily distinguishable on PD

images. On the other hand, exploiting T1 and T2 relaxation time differences between various sorts of

brain tissue leads to higher quality segmentation of structures within the brain.

Using triangulation (tessellation) and interpolation it ispossible to create fine-grained smooth mesh

representations or tetrahedral assemblies of the segmented tissues [36, 146, 163]. Obtained 3D mesh of the

cortical surface alone brings valuable information to the analysis ofE/MEG signals [28]: the physiology

of the neuronal generators can be considered, allowing one tolimit the search space for activated sources

to the gray matter regions and oriented orthogonally or nearly so to the cortical surface [38, 134].

Monte Carlo studies [110] tested the influence of the orientation constraint in the case of the DECD

model and showed that such constraint leads to much better conditioning of the inverse problem while still

being robust to the error of the assumed cortical surface: random deviation of the orientation in30◦ range

leads to just a slight increase of distortion, thus not significantly affecting the accuracy of the localization

procedure. Anatomical constraints improve the localization and contrast of beamforming imaging methods

as well, but the use of anatomical constraints found to be advantageous only in case of good MRI/E/MEG

coregistration [69].

3.1.3 Forward Modeling of EEG and MEG

Volumetric structures derived from the tessellation procedure are used to create a realistic geometry of the

head, which is crucial for the forward modeling ofE/MEG fields. Previously, rough approximations based

on best-fit single/multiple sphere models were developed to overcome the burden of creating realistic

head geometry, but they became less favorable as the increased availability of powerful computational

resources made more realistic modeling possible. Spatial information is especially important for EEG
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forward modeling due to the fact that it is more strongly affected by the conductivities of the skull and the

scalp than the MEG forward model. Such inhomogeneities do not affect the magnetic field at all in case of

a spherical head model, when only the inner skull surface is ofthe main concern for the forward modeling.

There are four numerical methods available to solve theE/MEG modeling problem, and the Boundary

Elements Method (BEM) [65] is the most commonly used when isotropy (direction independence) of the

matters is assumed, so that only boundary meshes obtained bythe tessellation process are required. It was

shown, however, that anisotropy of the skull [115] and white-matter [195] can bias EEG and MEG forward

models. To solve the forward problem in the case of an anisotropic medium, the head volume is presented

by a large assembly of small homogeneous tetrahedrons, and aFinite Elements Method (FEM) [122] is

used to approximate the solution. Another possible way is to use the Finite Difference Method (FDM)

on a regular computational mesh [153]. Table A lists some publicly available software which can help

performing the forwardE/MEG modeling. Forward modeling ofE/MEG signal rely on the knowledge of

matter conductivities. Common values of conductivities fordifferent tissues can be found in the literature

[50], or can be estimated on a per-subject basis using Electrical Impedance Tomography (EIT) [58] or

Diffusion Tensor (DT) [179] MRI.

3.2 Forward Modeling of BOLD Signal

The successful analysis of the results of a multimodal experiment remains problematic. The main problem

of multimodal analysis is the absence of a general unifying account of the BOLD fMRI signal in terms of

the characteristics of a neuronal response. Various modelshave been suggested, on one hand they include

naive modeling of BOLD signal in the context of a Linear Time Invariant System (LTIS). On the other

hand there are general models of the BOLD signal in terms of detailed biophysical processes (Balloon[26]

or Vein and Capillary[162] models). The naive models are not general enough to explain the variability of

the BOLD signal, whereas complex parametric models that rely heavily on a prior knowledge of nuisance

parameters (due to biophysical details), almost never do not have a reliable and straightforward means of

estimation. This fact makes it unlikely to use such comprehensive models as reliable generative models of

the BOLD signal. Research continues in attempts to derive novelsuitable models to support data obtained

in different modalities based on originating them neuronalsignal. Interestingheuristic modelof neuronal

activation and its influence on BOLD and EEG signals was recently suggested by Kilner, et al. [85].

Suggested model relates BOLD signal to the changes in spectralcharacteristics of the EEG signal during
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activation. Proposed model formulation agrees well with the results of many multimodal experiments

which used other methods of multimodal analysis. Thus this model sounds promising and it might reveal

reliable interdependencies between different brain imaging modalities. The following section describes

modeling issues in greater detail to further underline the limited applicability of many multimodal analysis

methods covered in Section 3.3.

3.2.1 Convolutional Model of BOLD Signal

Various experimenters had originally focused on simple contrast designs such as block design paradigms

in order to exploit the presumed linearity between their design parameters and the HR. This assumption

depends critically on the ability of the block design to amplify the SNR and the implicit belief that the HR

possess more temporal resolution than indicated by the TR.

In order to account for the present autocorrelation of the HR caused by its temporal dispersive

nature, Friston et al. [47] suggested to model HR with a LTIS. Todescribe the output of such a system, a

convolution of an input (joint intrinsic and evoked neuronal activity q(t)) with a hemodynamic response

function (HRF)h(t) is used to model the HR

f(t) = (h ∗ q)(t). (3.1)

Localized neuronal activity itself is not readily available via means of non-invasive imaging,

therefore it is more appropriate to verify LTIS modeling on real data as a function of parameters of the

presented stimuli (i.e.duration, contrast).

The convolutional model was used on real data to demonstratelinearity between the BOLD response

and the parameters of presented stimuli [22, 33]. In fact, many experimenters have shown apparent

agreement between LTIS modeling and real data. Specificly it has been possible to model responses

to longer stimuli durations by constructing them using the responses to shorter duration stimuli, which is

consistent with LTIS modeling. Because of the predictive success, its relative simplicity of application and

resulting ignorance of biophysical details this modeling approach became widely accepted. Unfortunately

LTIS as a modeling constraint is very weak therefore allowing an arbitrary choice of parametric HRF

based only on preference and familiarity.

Over the years multiple models for the HRF have been suggested. The most popular and widely

used up until now is a single probability density function (PDF) of Gamma distribution by [99]. It was
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elaborated by Glover [54] to perform the deconvolution of theHR signal, and the nuisance parameters

(n1, t1, n2, t2, a2) of the next HRF were estimated for motor and auditory areas

h(t) =
1

c1

tn1 e−t/t1 − a2

c2

tn2 e−t/t2 where ci = max
t

tni e−t/ti =
( e

niti

)−ni

(3.2)

which can be described as the sum of two unscaled PDFs of Gamma distribution. The first term captures

the positive BOLD HR and the second term is to capture the overshoot often observed in the BOLD signal.

Many other simple and as well as more sophisticated models of HRFwere suggested: Poisson PDF [47],

Gaussians [148], Bayesian derivations [29, 53, 116] and others. The particular choice of any of them was

primarily dictated by some other than bio-physics motivation: easy Fourier transformation, presence of

post-response dip or “best-fit” properties.

Since the suggestion of the convolutional model describingBOLD response, different aspects of HR

linearity became an actively debated question. If HR is linear, then what features of the stimulus (e.g.

duration, intensity) or neuronal activation (e.g.firing frequency, field potentials, frequency power) does it

vary linearly with? As the first approximation, it is importantto define the ranges of the above mentioned

parameters in which HR was found to behave linearly. For example, early linearity tests [54] showed

the difficulty in predicting long duration stimuli based on an estimated HR from shorter duration stimuli.

[169] reviewed existing papers describing different aspects of non-linearity in BOLD HR and attempted

to determine the ranges of linearity in respect to stimuli duration in three cortical areas: motor, visual and

auditory complex. The results of these analyses have shown that although there is a strong non-linearity

observed on small stimuli durations, long stimuli durations show higher degree of linearity.

It appears that a simple convolutional model generally is not capable of describing the BOLD

responses in terms of the experimental design parameters ifsuch are varying in a wide range during the

experiment. Nevertheless LTIS might be more appropriate to model BOLD response in terms of neuronal

activation if most of the non-linearity in the experimentaldesign can be explained by the non-linearity of

the neuronal activation itself.

3.2.2 Neurophysiologic Constraints

In the previous section the subject of linearity between the experimental design parameters and the

observed BOLD signal was explored. For the purpose of this review it may be more interesting to explore

the relation between neuronal activity and HR.
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It is known thatE/MEG signals are produced by large-scale synchronous neuronal activity, whereas

the nature of the BOLD signal is not clearly understood. The BOLD signal does not correspond to

the neural activity that consumes the most energy [8], as early researchers believed. Furthermore, the

transformation between the electrophysiological indicators of neuronal activity and the BOLD signal

cannot be linear for the entire dynamic range, under all experimental conditions and across all the brain

areas. Generally, a transformation function cannot be linear since the BOLD signal is driven by a number

of “nuisance” physiologic processes such as cerebral metabolic oxygen consumption (CMRO2), cerebral

blood flow (CBF) and cerebral blood volume (CBV) as suggested by theBalloon model[26], which are

not generally linear.

Due to the indirect nature of the BOLD signal as a tool to measure neuronal activity, in many

multimodal experiments a preliminary comparative study isdone first in order to assess the localization

disagreement across different modalities. Spatial displacement is often found to be very consistent across

multiple runs or experiments (see Section 3.3.3 for an example). Specifically, observed differences can

potentially be caused by the variability in the cell types and neuronal activities producing each particular

signal of interest Nunez and Silberstein [135]. That is why it is important first to discover the types of

neuronal activations that are primary sources of the BOLD signal. Some progress on this issue has been

made. A series of papers generated by a project to cast light on the relationship between the BOLD signal

and neurophysiology, have argued that local field potentials (LFP) serve a primary role in predicting BOLD

signal [111, and references 27, 29, 54, 55 and 81 therein]. This work countered the common belief that

spiking activity was the source of the BOLD signal [for example7] by demonstrating a closer relation of

the observed visually evoked HR to the local field potentials (LFP) of neurons than to the spiking activity.

This result places most of the reported non-linearity between experimental design and observed HR into

the non-linearity of the neural response, which would benefita multimodal analysis.

Note that the extracellular recordings experiments described above, were carried out over a small

ROIs, therefore they inherit the parameters of underlying hemodynamic processes for the given limited

area. Thus, even if LFP is taken as the primary electrophysiological indicator of the neuronal activity

causing BOLD signal, the relationship between the neuronal activity and the hemodynamic processes on

a larger scale remains an open question.

Since near-infrared optical imaging (NIOI) is capable of capturing the individual characteristics of

cerebral hemodynamics such as total, oxy-, and deoxy-hemoglobin content, some researchers tried to use
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NIOI to reveal the nature of the BOLD signal. Rat studies using 2D optical imaging [41] showed the

non-linear mapping between the neuronal activity and evokedhemodynamic processes. This result should

be a red flag for those who try to define the general relation between neuronal activation and BOLD signal

as mostly linear. The conjoint analysis of BOLD and NIOI signals revealed the silent BOLD signal during

present neural activation registered byE/MEG modalities [162]. This mismatch betweenE/MEG and fMRI

results is known as thesensory motor paradox[141]. To explain this effect, theVein and Capillary

model was used to describe the BOLD signal in terms of hemodynamic parameters [162]. The suggested

model permits the existence of silent and negative BOLD responses during positive neuronal activation.

This fact, together with an increasing number of studies [172] confirming that sustained negative BOLD

HR is a primary indicator of decreased neuronal activation, provide yet more evidence that the BOLD HR

generally is not a simple linear function of neuronal activation but at best is a monotone function which has

close to linear behavior in a wide range of nuisance neurophysiologic parameters. This section concludes

by noting that the absence of a generative model of the BOLD response prevents the development of

universal methods of multimodal analysis. Nevertheless, asdiscussed in this section and is shown by the

results presented in the next section, there are specific ranges of applications where the linearity between

BOLD and neuronal activation can be assumed. Such simplistic model can be voted for by the supported

of Occam’s razorprinciple which is to prefer simple models capable of describing the data of interest.

3.3 Analysis Methods

Whenever applicable, a simple comparative analysis of the results obtained from the conventional uni-

modal analyses together with findings reported elsewhere, canbe considered as the first confirmatory

level of a multimodal analysis. This type of analysis is veryflexible, as long as the researcher knows

how to interpret the results and to draw useful conclusions,especially whenever the results of comparison

reveal commonalities and differences between the two [185].On the other hand, by default a unimodal

analysis makes limited use of the data from the modalities, and encourages researchers to look for analysis

methods which would incorporate the advantages of each single modality. Nevertheless, simple inspection

is helpful for drawing preliminary conclusions on the plausibility to perform any conjoint analysis using

one of the methods described in this section, including correlative analysis which might be considered an

initial approach to try.
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3.3.1 Correlative Analysis of EEG and MEG with fMRI

In some experiments, theE/MEG signal can serve as the detector of spontaneous neuronal activity (e.g.

epileptic discharges) or changes in the processing states (e.g.vigilance states). The time onsets derived

from E/MEG are alone valuable for further fMRI analysis, where the BOLD signal often cannot provide

such timing information. For instance, such use of EEG data is characteristic for the experiments

performed via aTriggered fMRIacquisition scheme (Section 2.2).

CorrelativeE/MEG/fMRI analysis becomes more intriguing if there is a stronger belief in the linear

dependency between the BOLD response and features ofE/MEG signal (e.g.amplitudes of ERP peaks,

powers of frequency components), than between the hemodynamics of the brain and the corresponding

parameter of the design (e.g.frequency of stimulus presentation or level of stimulus degradation). Then

E/MEG/fMRI analysis effectively reduces the inherent bias present in the conventional fMRI analysis

methods by removing the possible non-linearity between the design parameter and the evoked neuronal

response.

The correlative analysis relies on the preprocessing ofE/MEG data to extract the features of interest

to be compared with the fMRI time course. The obtainedE/MEG features first get convolved with a

hypothetical HRF (Section 3.2.1) to accommodate for the HR sloppiness and are then subsampled to fit

the temporal resolution of fMRI. The analysis of fMRI signal correlation with amplitudes of selected peaks

of ERPs revealed sets of voxels which have a close to linear dependency between the BOLD response and

amplitude of the selected ERP peak (N170 in [73], P300 in [74], and amplitude of mismatch negativity

(MMN) [109]), thus providing a strong correlation (P < 0.001 [73]). A parametric experimental design

with different noise levels introduced for the stimulus degradation [73, 109] or different levels of sound

frequency deviant [109] helped to extend the range of detected ERP and fMRI activations, thus effectively

increasing the significance of the results found. To supportthe suggested connection between the specific

ERP peak and fMRI activated area, the correlation of the same BOLDsignal with the other ERP peaks

must be lower if any at all [73]. As a consequence, such analysiscannot prove that any specific peak of

EEG is produced by the neurons located in the fMRI detected areas alone but it definitely shows that they

are connected in the specific paradigm.

The search for the covariates between the BOLD signal and wide-spread neuronal signals, such

as the alpha rhythm, remains a more difficult problem due to the ambiguity of the underlying process,

since there are many possible generators of alpha rhythms corresponding to various functions [130].
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As an example, Goldman et al. [56] and Laufs et al. [101] were looking for the dependency between

fMRI signal and EEG alpha rhythm power during interleaved and simultaneous EEG/fMRI acquisition

correspondingly. They report similar (negative correlation in parietal and frontal cortical activity), as

well as contradictory (positive correlation) findings, whichcan be explained by the variations in the

experimental setup [102] or by the heterogeneous coupling between the alpha rhythm and the BOLD

response [101]. Despite the obvious simplification of the correlative methods, they may still have a role to

play in constraining and revealing the definitive forward model in multimodal applications.

3.3.2 Decomposition Techniques

The common drawback of the presented correlative analyses techniques is that they are based on the

selection of the specific feature of theE/MEG signal to be correlated with the fMRI time trends, which

are not so perfectly conditioned to be characterized primarily by the feature of interest. The variance of

the background processes, which are present in the fMRI data and are possibly explained by the discarded

information from theE/MEG data, can reduce the significance of the found correlation. That is why it

was suggested [117] to use the entirety of theE/MEG signal, without focusing on its specific frequency

band, to derive theE/MEG and fMRI signal components which have the strongest correlation among them.

The introduction of decomposition techniques (such as basis pursuit, PCA, ICA,etc.) into the multimodal

analysis makes this work particularly interesting.

To perform the decomposition [117], Partial Least-Squares(PLS) regression was generalized into

the tri-PLS2 model, which represents theE/MEG spectrum as a linear composition of trilinear components.

Each component is the product of spatial (amongE/MEG sensors), spectral and temporal factors, where

the temporal factors have to be maximally correlated with thecorresponding temporal component of

the similar fMRI signal decomposition into bilinear components: products of the spatial and temporal

factors. Analysis using tri-PLS2 modeling on the data from [56] found a decomposition into 3 components

corresponding to alpha, theta and gamma bands of the EEG signal. The fMRI components found had a

strong correlation only in alpha band component (Pearson correlation0.83 (p = 0.005)), although the

theta component also showed a linear correlation of0.56 (p = 0.070). It is interesting to note, that spectral

profiles of the trilinear EEG atoms received with and without fMRI influence were almost identical, which

can be explained either by the non-influential role of fMRI in tri-PLS2 decomposition of EEG, or just by a
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good agreement between the two. On the other hand, EEG definitely guided fMRI decomposition, so that

the alpha rhythm spatial fMRI component agreed very well with the previous findings [56].

3.3.3 Equivalent Current Dipole Models

ECD is the most elaborated and widely used technique for sourcelocalization in EMSI. It can easily

account for activation areas obtained from the fMRI analysisthus giving the necessary fine time-space

resolution by minimizing the search space of non-linear optimization to the thresholded fMRI activation

map. While being very attractive, such a method bears most of the problems of the ECD method mentioned

in Section 1.3, and introduces another possible bias due to the belief in the strong coupling between

hemodynamic and electrophysiological activities. For this reason it needs to be approached with caution

in order to carefully select the fMRI regions to be used in the ECD/fMRI combined analysis.

Although good correspondence between ECD and fMRI results is often found [3], some studies

reported a significant (1–5 cm) displacement between locations obtained from fMRI analysis and ECD

modeling [15, 59, 87, 108]. It is interesting to note, that such displacement can be very consistent across

the experiments of different researchers using the same paradigm (for instance motor activations [86,

87, 158]). As it was already mentioned, in the first step, a simple comparison of detected activations

across the two modalities can be done to increase the reliability of dipole localization alone. Further,

additional weighting by the distance from the ECD to the corresponding fMRI activation foci can guide

ECD optimization [188] and silent in fMRI activations can be accommodated by introducing free dipoles

without the constraint on dipole location.

Auxiliary fMRI results can help to resolve the ambiguity of theinverseE/MEG problem if ECD

lies in the neighborhood of multiple fMRI activations. Placing multiple ECDs inside the fMRI foci

with successive optimization of ECDs orientations and magnitudes may produce more meaningful results,

especially if it better describes theE/MEG signal by the suggested multiple ECDs model.

Due the large number of consistent published fMRI results, it seems viable to perform a pureE/MEG

experiment with consequent ECD analysis using known relevant fMRI activation areas found by the other

researchers performing the same kind of experiment [45], thus providing the missing temporal explanation

to the known fMRI activations.
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3.3.4 Linear Inverse Methods

Dale and Sereno [38] formulated a simple but powerful linear framework for the integration of different

imaging modalities into the inverse solution of DECD, where the solution was presented as unregularized

(just minimum-norm) (1.8) withWQ = CS andλWX = Cǫ. The simplest way to account for fMRI

data is to use thresholded fMRI activation map as the inverse solution space but this was rejected [51]

due to its incapability to account for fMRI silent sources, which is why the idea to incorporate variance

information from fMRI intoCS was further elaborated [110] by the introduction of relative weighting for

fMRI activated voxels via constructing a diagonal matrixWQ = WfMRI = {νii}, whereνii = 1 for fMRI

activated voxels andνii = ν0 ∈ [0, 1] for voxels which are not revealed by fMRI analysis. A Monte Carlo

simulation showed thatν0 = 0.1 (which corresponds to the90% relative fMRI weighting) leads to a good

compromise with the ability to find activation in the areas which are not found active by fMRI analysis and

to detect active fMRI spots (even superficial) in the DECD inverse solution. An alternative formulation

of the relative fMRI weighting in the DECD solution can be given using a subspace regularization (SSR)

technique [2], in which anE/MEG source estimate is chosen from all possible solutions describing the

E/MEG signal, and is such that it minimizes the distance to a subspace defined by the fMRI data (Fig. 3.1).

Such formulation helps to understand the mechanism of fMRI influence on the inverseE/MEG solution:

SSR biases underdetermined theE/MEG source locations toward the fMRI foci.

The relative fMRI weighting was tested [37] in an MEG experiment and found conjoint fMRI/MEG

analysis results similar to the results reported in previous fMRI, PET, MEG and intracranial EEG studies.

Babiloni et al. [9] followed Dale et al. [37] in a high resolutionEEG and fMRI study to incorporate

non-thresholded fMRI activation maps with other factors. First of all, theWfMRI was reformulated to

(WfMRI ′)ii = ν0 + (1 − ν0)∆i/∆max, where∆i corresponds to the relative change of the fMRI signal

in the i-th voxel, and∆max is the maximal detected change. This way the relativeE/MEG/fMRI scheme

is preserved and locations of stronger fMRI activations havehigher prior variance. Finally the three

available weighting factors were combined: fMRI relative weighting, correlation structure obtained from

fMRI described by the matrix of correlation coefficientsKS, and the gain normalization weighting matrix

Wn (Section 1.3.2):WQ = W
1/2
fMRI ′W

1/2
n KSW

1/2
n W

1/2
fMRI ′. AlthoughWfMRI ′ alone had improved EMSI

localization, the incorporation of theKS lead to finer localization of neuronal activation associated with

finger movement.
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Figure 3.1 Geometrical interpretation of subspace regularization in the MEG/EEG source space. (A)
The cerebral cortex is divided into source elementsq1,q2, . . . ,qK , each representing an ECD with a
fixed orientation. All source distributions compose a vectorq in K-dimensional space. (B) The source
distributionq is divided into two componentsqa ∈ Sa ≡ range(G⊤), determined by the sensitivity of
MEG sensors andq0 ∈ nullG, which does not produce an MEG signal. (C) The fMRI activations define
another subspaceS fMRI . (D) The subspace-regularized fMRI-guided solutionqSSR∈ M is closest toS fMRI ,
minimizing the distance‖PqSSR‖, whereP (aN×N diagonal matrix withPii = 1/0 when thei-th fMRI
voxel is active/inactive) is the projection matrix into theorthogonal complement ofS fMRI . (Adapted from
[2, Figure 1])
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Although most of the previously discussed DECD methods are involved in finding minimalL2 norm

solution, the fMRI conditioned solution with minimalL1 norm (regularization term in (1.6)C(Q) = ‖Q‖1)

is shown to provide a sparser activation map [48] with activityfocalized to the seeded hotspot locations

[188].

An fMRI-conditioned linear inverse is an appealing method dueto its simplicity, and rich

background of DECD linear inverse methods derived for the analysis ofE/MEG signals. Nonetheless, one

should approach these methods with extreme caution in a domain where non-linear coupling between

BOLD and neural activity is likely to overwhelm any linear approximation [59].

3.3.5 Beamforming

Lahaye et al. [96] suggest an iterative algorithm for conjoint analysis of EEG and fMRI data acquired

simultaneously during an event-related experiment. Theirmethod relies on iterated source localization by

the LCMV beamformer (1.10), which makes use of both EEG and fMRI data. The covarianceCX used

by the beamformer is calculated anew each time step, using the previously estimated sources and current

event responses from both modalities. This way neuronal sites with a good agreement between the BOLD

response and EEG beamformer reconstructed source amplitude, benefit most at each iteration. Although

the original formulation is cumbersome, this method appears promising as (a) it makes use of both spatial

and temporal information available from both modalities, and (b) it can account for silent BOLD sources

using an electro-metabolic coupling constant which is estimated for each dipole and defines the influence

of the BOLD signal at a given location onto the estimation ofCS which, in turn, drives the estimate of

CX .

3.3.6 Bayesian Inference

During the last decade, Bayesian methods became dominant in the probabilistic signal analysis. The idea

behind them is to use Bayes’ rule to derive aposterior probabilityof a givenhypothesishaving observed

dataD, which serves asevidenceto support the hypothesis

p(H|D) =
p(D|H) p(H)

p(D)
, (3.3)

wherep(H) and p(D) are prior probabilities of the hypothesis and evidence correspondingly, and the

conditional probabilityp(D|H) is known as alikelihood function. Thus, (3.3) can be viewed as a method
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to combine the results of conventional likelihood analysesfor multiple hypotheses into the posterior

probability of the hypothesesp(H|D) or some function of it, after been exposed to the data. The derived

posterior probability can be used to select the most probable hypothesis,i.e. the one with the highest

probability

Ĥ|D = arg max
H

p(H|D) = arg max
H

log p(D|H) + log p(H) (3.4)

leading to the maximuma posteriori(MAP) estimate, where the prior data probabilityp(D) (often called

a partition function) is omitted because the data does not depend on the choice of the hypothesis and it

does not influence the maximization overH.

For the class of problems related to the signal processing, hypothesisH generally consists of a model

M characterized by a set of nuisance parametersΘ = {θ1, θ2...n}. The primary goal usually is to find a

MAP estimate of some quantity of interest∆ or, more generally, its posterior probability distribution

p(∆|D,M,Θ). ∆ can be an arbitrary function of the hypothesis or its components∆ = f(H), or often

just a specific nuisance parameter of the model∆ ≡ θ1. To obtain posterior probability of the nuisance

parameter, its marginal probability has to be computed by the integration over the rest of the parameters

of the model

p(θ1|D,M) =

∫

p(θ1, θ2...n|D,M) dθ2...n =

∫

p(θ1|θ2...n,D,M) p(θ2...n|D,M) dθ2...n. (3.5)

Due to the integration operation involved in determination of any marginal probability, Bayesian analysis

becomes very computationally intensive if analytical integral solution does not exist. Therefore, sampling

techniques (e.g.MCMC, Gibbs sampler) are often used to estimate full posterior probabilityp(∆|D,M),

MAP ∆̂|D,M = arg max∆ p(∆|D,M), or some statistics such as an expected valueE[∆|D,M] of the

quantity of interest.

The Bayesian approach sounds very appealing for the development of multimodal methods. It is

inherently able to incorporate all available evidence, which is in our case obtained from the fMRI and

E/MEG data (D = {X,F}) to support the hypothesis on the location of neuronal activations, which

is in the case of DECD model isH = {Q,M}. However, the detailed analysis of (3.3) leads to

necessary simplifications and assumptions of the prior probabilities in order to derive a computationally

tractable formulation. Therefore it often loses its generality. Thus to derive a MAP estimator for̂Q|X,B,M

Trujillo-Barreto et al. [178] had to condition the computation by a set of simplifying modeling assumptions
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such as: noise is normally distributed, nuisance parameters of forward models have inverse Gamma

prior distributions, and neuronal activation is describedby a linear function of hemodynamic response.

The results on simulated and experimental data from a somatosensory MEG/fMRI experiment confirmed

the applicability of Bayesian formalism to the multimodal imaging even under the set of simplifying

assumptions mentioned above.

Usually, modelM is not explicitly mentioned in Bayesian formulations (such as (3.5)) because only

a single model is considered. For instance, Bayesian formulation of LORETAE/MEG inverse corresponds

to a DECD model, whereΘ = Q is constrained to be smooth (in space), and to cover whole cortex surface.

In the case of theBayesian Model Averaging(BMA), the analysis is carried out for different modelsMi,

which might have different nuisance parameters,e.g.E/MEG and BOLD signals forward models, possible

spatial locations of the activations, constraints to regularizeE/MEG inverse solution. In BMA analysis we

combine results obtained using all considered models to compute the posterior distribution of the quantity

of interest

p(∆|D) =
∑

i

p(∆|D,Mi) p(Mi|D), (3.6)

where the posterior probabilityp(Mi|D) of any given modelMi is computed via Bayes’ rule using prior

probabilitiesp(Mi), p(D) and the likelihood of the data given each model

p(D|Mi) =

∫

p(D|Θ,Mi) p(Θ|Mi) dΘ. (3.7)

Initially, BMA was introduced into theE/MEG imaging [177], where Bayesian interpretation of

(1.8) was formulated to obtainp(Q|X,F) for the case of Gaussian uncorrelated noise (WX = Cǫ =

νǫI). In order to create a model, the brain volume gets partitioned into a limited set of spatially distinct

functional compartments, which are arbitrarily combined todefine aMi, search space for theE/MEG

inverse problem.

At the end, different models are sampled from the posterior probabilityp(Mi|X) to get the estimate

of the expected activity distribution of ECDs over all considered source models

E[Q|X] =
∑

i

E[Q|X,Mi] p(Mi|X)

Var[Q|X] =
∑

i

Var[Q|X,Mi] p(Mi|X),
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where the normalized probabilityp(Mi|X), Bayes’ FactorBi0, and prior oddsαi, are

p(Mi|X) =
αiBi0

∑

k

αkBk0

Bi0 =
p(X|Mi)

p(X|M0)
αi =

p(Mi)

p(M0)

In the original BMA framework forE/MEG [177]αi = 1∀i, i.e. the models had a flat prior PDF because

no additional functional information was available at thatpoint. Melie-Garćıa et al. [119] suggested to

use the significance values of fMRI statistical t-maps to derivep(Mi) as the mean of all such significance

probabilities across the present inMi compartments. This strategy causes the models consisting of the

compartments with significantly activated voxels get higherprior probabilities in BMA. The introduction

of fMRI information as the prior to BMA analysis reduced the ambiguity of the inverse solution, thus

leading to better localization performance. Although further analysis is necessary to define the

applicability range of the BMA inE/MEG/fMRI fusion, it already looks promising because of the use of

fMRI information as an additional evidence factor inE/MEG localization rather than a hard constraint.

Due to the flexibility of Bayesian formalism, various Bayesian methods solvingE/MEG inverse

problem already can be easily extended to partially accommodate evidence obtained from the analysis

of fMRI data. For instance, correlation among different areas obtained from fMRI data analysis can

be used as a prior in the Bayesian reconstruction of correlated sources [152]. The development of a

neurophysiologic generative model of BOLD signal would allowmany Bayesian inference methods (such

as [156]) to introduce complete temporal and spatial fMRI information into the analysis ofE/MEG data.

CHAPTER 4

MOTIVATIONS FOR FURTHER DEVELOPMENT OF MULTIMODAL METHODS

The only reason some people get lost in thought is because

it’s unfamiliar territory

– Paul Fix

As shown above, fMRI BOLD signal is inherently non-linear as a function of neuronal activation.

Nevertheless there have been multiple reports of linear dependency between the observed BOLD response

and the selected set ofE/MEG signal features. In general, such results are not inconsistent with the non-

linearity of BOLD, since of course, often a non-linear functioncan be well approximately linear in the

context of a specific experimental design, regions of interest, or dynamic ranges of the selected features of

E/MEG signals. Besides dominant LFP/BOLD linearity reported by Logothetis and also confirmed in the

specific frequency bands of EEG signal during flashing checkerboard experiment [168], there have been

reports of a strong correlation between the BOLD signal amplitude and other features ofE/MEG responses.

The exploration of techniques in addition to the ones presented in the Section 3.3, and analysis of

the other components contributing toE/MEG signals might bring fruitful results in terms of the conjoint

analysis. Next Section 4.1 discusses such possible novel directions before Section 4.2 sketches the

motivation, goals and scope of this Ph.D. thesis.

4.1 Alternative Ways to Explore

In the past DC-E/MEG signal component (Section 1.1) has not been of an attention for multimodal

integration, despite recent experiments showing the strongcorrelation between the changes of the

observed DC-EEG signal and hemodynamic changes in the human brain [182]. In fact, such

DC-E/MEG/BOLD coupling suggests that the integration of fMRI and DC-E/MEG might be a particularly

useful way to study the nature of the time variations in HR signal. Such variations are usually observed

during fMRI experiments but are not explicitly explained by the experimental design or by the physics of

MR acquisition process.

Having selected features of the signals which would be involved in the fusion, many EMSI methods

can be naturally extended to account for fMRI data if a generative forward model of BOLD signal is

available. For instance, direct universal-approximator inverse methods [79, 80] have been found to be
41
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very effective (fast, robust to noise and to complex forwardmodels) for theE/MEG dipole localization

problem, and could be augmented to accept fMRI data if the generative model for it was provided.

FMRI conditioned E/MEG DECD methods have been shown to be relatively simple and

mathematically compelling for source imaging when there is agood spatial agreement betweenE/MEG

and fMRI signals. Due to the advantages of these methods, it might be valuable to consider other

advancedE/MEG DECD methods such as FOCUSS [60], which is known to bring improvement of

estimation of focal sources over simple linear inverse methods [14].

ICA as a signal decomposition technique has been found effective in removing artifacts inE/MEG

without degrading neuronal signals [82, 84, 174, 184], moreover it is known to be superior to PCA in the

component analysis ofE/MEG signals [81]. Initial research using ICA of fMRI in the spatial domain [118]

was controversial, however consecutive experiments and generalization of ICA to fMRI in the temporal

domain (see [27] for an overview) has increased its normativevalue. The development of ICA methods

for the analysis of multimodal data provides a logical extension of the decomposition techniques covered

earlier.

The formulation of a general BOLD signal model capable of describing the desired non-linear

dependency in terms of neuronal activation and nuisance physiological parameters would constitute a

major step toward the development of the multimodal methodswith wider range of application than in

the current “linear” domain. Since most of the multimodal methods presented before rely upon the linear

dependence between signals, it is also important to analyze,expand and formalize the knowledge about

the “linear” case, which is the simplest modeling assumptionvalid in many instances. Thus it deserves

closer attention especially if we follow the notion ofOccam’s razorprinciple.

4.2 “The Challenge”

As many other attempts to process different brain imaging modalities, this work aims to develop a viable

method for multimodal information integration. Such method should make use of the available temporal

and spatial information from both functional brain imagingmodalities such as fMRI and EEG or MEG.

Being said, it is important to emphasize once again, that due to the uncertainty in the amount of synergy

which is present betweenE/MEG and fMRI signals, a general methodology applicable to all brain imaging

studies cannot yet to be defined. Nevertheless in the cases where the primary goal of the experiment is to

gain a better resolution in the analysis of neuronal activations of the same origin (e.g. just motor, or just
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visual activations), assumption of linearity might be valid if the experimental design is non-parametric,

and activations are known to be reproducible and consistent over time. The assumption that fMRI and

E/MEG signals generally correspond to the same neuronal activity taken along with experimental design

restrictions, lets us consider simple generative models such as the convolutional model (Section 3.2.1).

The search for anappropriatebrain imaging experiment converged to an interesting and challenging

topic in the brain imaging: mapping of the primary motor cortex (M1) and the higher processing level areas

(e.g.PMA, SMA, SI), i.e. the investigation of the assignment of different body partsmotor actions to the

responsible locations on the cortex. This type of studies took off more than a century ago with direct

cortical stimulation in animals and the known pioneers in human studies were Penfield and Boldrey [142].

They made direct observations by stimulating the human brain with weak electrical shocks in conscious

patients who were undergoing surgery. Well-knownhomunculus(Fig. 4.1), a caricature of the human form

with body parts drawn in sizes that are proportional to the presumed extent of their representations, was

one of the outcomes of their study.

All studies aiming to create a mapping of motor cortex (or alsocalled somatotopy1) could be

split into 2 major groups: active and passive. In active studies, cortex regions are stimulated either

invasively through direct stimulation of the exposed cortex (i.e. during neurosurgical procedures) or non-

invasively using such tools as TMS. Corresponding elicited motor movements or subject’s description

of sensation allows to discover the mapping. Safer and more challenging methodology is to register

neuronal activation in primary motor (M1) and somato-sensory (S1) cortical areas using non-invasive

brain imaging techniques such asE/MEG and fMRI, when subject is either performing some motor task

(e.g.finger-tapping) or experiencing sensory or nerve stimulation. For instance, MEG experiment allowed

to distinguish cubitus from clunis along the somato-sensory cortex (Fig. 4.1) when subjects experienced

stimulation of the corresponding body part [43]. Fisher et al. [43] suggested that such kind of study could

be used as a benchmark for different localization methods. Their idea supports the challenge present in

this task.

Although coarse mapping of body parts is well studied, fine mapping of fingers while performing

motor task is difficult to investigate with any non-invasive brain imaging technique [39, 70]. Consequently,

some ad-hoc experimental design, thoughtful experimentalsetup, and advanced statistical processing [39]

are required to extract the spatial sequencing between the adjacent fingers. It is even more challenging [70]

1Somatotopic- organized in a point-to-point representation of the surface of the body
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(a) (b)

Figure 4.1 a Identified sites of cortical activity, and95% confidence ellipsoids, corresponding to
stimulation of the clunis and cubitus superimposed on a representative magnetic resonance image. The
two cortical sites are clearly distinct, with no overlap of the 95% confidence volumes. Furthermore, the
data are in good agreement with Penfield’s neurosurgically established homunculus. (Borrowed from [43])

b Detailed homunculus mapping.

to separate between finger taps sequential in time. After all ofthe research investigations, fine somatotopy

of M1 remains a controversy. There is an emerging evidence from animal studies and fMRI human studies

in favor of distributed and overlapping cortical somatotopy representation [39]. Thus a methodology able

to resolve the ambiguity in this question, would be a prominent achievement in the field.

Before tackling the problem, it is helpful to highlight obvious problems with the existing studies:

• E/MEG studies investigating M1 somatotopy used single ECD modeling to get focal activation

locations. This kind of modeling is unrealistic and very biased if activation is not adequately

modeled by an ECD, which is often the case when there are multiple activation sites as it was

suggested before. Preliminary localization studies usingfMRI conditioned DECD modeling [9]

were able to improve DECD localization in such kinds of tasks butthey did not aim to discover and

analyze the somatotopy;
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• observed overlaps in BOLD detected activation sites can be simply due to the spatial spread of

BOLD signal. Taking into account vessel structure or using novel protocols such as fCBF [143]

might improve spatial resolution of fMRI studies, thus careful analysis of the experimental settings

and protocols should be carried out before carrying out the mapping experiment using fMRI;

• poor temporal resolution of BOLD signal does not allow any reliable sub-second temporal separation

of the motor events, thus reliable separation between sequential in time (sub-second interval) finger

taps cannot be achieved.

Bringing bothE/MEG and fMRI modalities together is hoped to provide grater amount of spatio-

temporal information about motor activations. Although it is necessary to use highly parameterized

models to describe motor activations registered with fMRI [197], they are believed to be consistent and

reproducible in time. Consequently they satisfy our restrictions for multimodal analysis stated before.

The goal of this Ph.D. project becomes:to propose multimodal analysis methods and validate them

on conjoint EEG/fMRI finger-tapping experiment .

The methods for conjoint analysis proposed in this dissertation rely on simultaneous fitting of the

signals from both given modalities using the models of observed signals at the high temporal and spatial

resolution. Such modeling of both signals which are producedby temporal (fMRI) and spatial (E/MEG)

filtering of the neuronal activity, implicitly defines regularization for theE/MEG inverse problem, thus

making it less ill-conditioned.

It is important first to validate the suggested methods,i.e. verify their capabilities and compare to

the existing methods. Chapter 6 presents the results and comparisons to the other methods when applied

to artificially generated data. While performing such simulations, it would be possible to investigate the

ranges of signals and noise characteristics in which suggested methods could be applied to provide reliable

results. In order to reach the goal stated above the future thesis work will consist of the experimental design

and the analysis of acquired neuroimaging data.



CHAPTER 5

MULTIMODAL IMAGING USING L-NORMS SIGNAL RECONSTRUCTION

First, this chapter introduces a general formulation of thefusion problem. After that, the description of

proposed methods to derive the solution under different problem conditions follows: generic formulation

in terms of the minimization of the squared sum error (L2 norm), outliers insensitive formulation using

minimization of the absolute error sum (L1 norm), and the simplifications of the problem in case of fixed

source orientation.

5.1 Generalized Problem Formulation

5.1.1 Forward Models

According to DECD model ofE/MEG signals (Section 1.3.2) and a simple convolutional model

(Section 3.2.1) for BOLD signal, we can summarize performed forward modeling as

Modality Data Matrix Size Model

fMRI F N×U F̂ = Q̃B

E/MEG X M×T X̂ = GQ

Q =















Qx

Qy

Qz















,

where Q̃(Q) (N×T matrix) represents the strength of the dipoles without orientation information

q̃jt =
√

q2
xit + q2

yit
+ q2

z it; Θ(Q) (3N×T matrix) contains pure orientation asΘjt = qjt/q̃it, where

i = j modN1; B (T×U matrix) is a circulant matrix which corresponds to the temporal filtering of the

neuronal signal amplitude to reconstruct BOLD response usingthe convolutional model (Section 3.2.1);

and G (M×3N matrix) is a lead field matrix for NEM (Section 1.3.2). In the case of fixed known

orientations of the dipoles representing neuronal generators, a single projection of the strength to that

direction is used, thus̃Q = Q.

5.1.2 Objective Function

The objective of the presented multimodal analysis is to estimate a temporally and spatially superior

modalityQ which is used to reconstruct botĥX andF̂ using described forward models. The reconstruction

1Here and further we will usej ∈ {1..3N} and correspondingi ∈ {1..N}, s.t. j ∈ {i, i + N, i + 2N} for the
projections of theith dipole on 3 axis (see Section 1.3.2 for more details)
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aims to minimize the residuals between the empirical and reconstructed values:̂X(Q)−X andF̂(Q)−F.

Because these signals are of different dimensionality, measured in different units and subject to different

noise levels, it is appropriate to define scaled residuals∆X(Q) = X̂(Q)−X√
νXMT

and∆F(Q) = F̂(Q)−F√
νFNU

, if the

noise is uncorrelated and has the same variance across sensorsνX andνF.

By introducing atrade-off parameterα between the quality of fit of two acquired modalities, the

regularizationparameterλ, and regularization functionC(Q), objective function (1.6) can be extended for

multimodal case as

Er(Q) = ‖∆X(Q)‖l + α‖∆F(Q)‖l + λ C(Q) (5.1)

wherel ∈ {1, 2} is the norm to define specific error cost function andC(Q) can incorporate some other

constraints such as the smoothness of the solution in time orin space, minimal norm of the solution

requirement, etc.

5.2 L2 Error, Variable Orientation – Gradient Descent

In the case ofl = 2, cost function (5.1) is represented as a sum of squared errors over the residuals. Taking

its derivative leads to a simple gradient descent rule

Qτ+1 = Qτ − η
∂Er(Q)

∂Q
, whereη is a learning rate. (5.2)

∂Er(Q)

∂Q
=

∂∆X(Q)

∂Q
+ α

∂∆F(Q)

∂Q
+ λ

∂ C(Q)

∂Q
(5.3)

∂∆X(Q)

∂Q
= 2GT (X − GQ) ,

∂∆F(Q)

∂Q
= 2Θ ⋆

(

(F − Q̃B)BT
)

, (5.4)

where· ⋆ · operation corresponds to element-wise product of two matrices.

5.3 L2 Error, Fixed Orientation

In the case of quadratic error and fixed orientation (Q̃ = Q) derivative∂∆F(Q)
∂Q

simplifies

∂∆F(Q)

∂Q
= 2 sign(Q) ⋆

(

(F − Q̃B)BT
)

. (5.5)

Instabilities in optimization brought bysign(x) can be reduced by using some smooth function which

approximates it well (e.g.squashed hyperbolic tangent function).
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It is very appealing to reformulate (5.4) in a presence of constraintQ > 0

∂∆X(Q)

∂Q
= 2GT (X − GQ) ,

∂∆F(Q)

∂Q
= 2(F − QB)BT , (5.6)

and if no additional constraints are imposed (λ C(Q) = 0), thenQ can be found as a solution of

∂Er(Q)

∂Q
=

∂∆X(Q)

∂Q
+ α

∂∆F(Q)

∂Q
= 0

GT (X − GQ) + α (F − QB)BT = 0,

GTGQ + Q
(

αBBT
)

−
(

αFBT + GTX
)

= 0,

known as Sylvester equation, for which efficient solvers exist. But presence of the constraintQ > 0

forbids us from using this simple formulation.

5.4 L1 Error Minimization - LP Minimization

Using defined abbreviations we formulate an initial LP problemas follows

X̂ + ∆X = X Constraints (5.7)

F̂ + ∆F = F (5.8)

q̃ij ≥ 0 Region (5.9)

E = ‖∆X‖1 + α‖∆F‖1 Objective , (5.10)

whereα is used to check different trade-offs between two modalitiesas well as to normalize their influence

in the optimization criteria.

Next we redefine each|x|, which are present in computation ofE (5.10) andq̃ij (5.12), in a form

suitable for LP as shown in Appendix B. These transformations lead to a side effect, namely minimization

of the sum of absolute values|sij|, so we need to add another termγ‖S‖1 to the objective function (5.10).

This side effect could be considered a desired result - the minimization ofL1 norm of the solution results

in its increased sparseness.

Transformation to LP

It is required to agree on the order of how any 2D array is “unfolded” into a 1D sequence. Each unfolded

matrixX is presented as a vectorX̄ and it is decomposed row-wise - rows compose unfolded matrix when
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taken sequentially. So forQ 3N×T matrix, which is the argument of optimization we want to obtain,

we get vectorQ̄ 3NT×1 where the order of dimensions growth within the vector ist → sensor→

orientation(axis), therefore time is the fastest growing dimension.

E/MEG Equation in LP form

We can represent (5.7) in a form suitable for LP using the Kronecker product

(G ⊗ IT )Q̄ = X̄ (5.11)

whereIZ is the identity matrix of sizeZ×Z.

FMRI Equation in LP form

First we need to encode the definition ofQ̃ into an LP constraint matrix using an approximation described

in Appendix B.2,

Q̃ = l(|Qx|, |Qy|, |Qz|), (5.12)

wherel(·) is an LP approximation of theL2 norm.

In a similar to (5.11) way we represent the productQ̃B in a form suitable for LP

F̂ = (IN ⊗ BT ) ¯̃
Q (5.13)

Final LP form

Finally we group all the constraints and the objective function together into an extended LP canonical

form,
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(G ⊗ IT )Q̄ + ∆X̄ = X̄ (5.14)

(IT ⊗ BT ) ¯̃
Q + ∆F̄ = F̄ (5.15)

Q̃ − l(|Qx|, |Qy|, |Qz|) = 0 (5.16)

¯̃
Q ≥ 0 (5.17)

E = ||∆X||1 + α||∆F||1 + γ||S||1 (5.18)

5.5 Remarks

It is necessary to list restrictions and omitted factors which have to be considered in the given models

when working with real data. Due to the undetermined BOLD fMRI forward model, unknown coupling

coefficientξ to map neuronal activation (dipole strength) to BOLD signal (ξ = B·,i/||B·,i||) yet to be

estimated. Approaches to consider when applying the suggested methods to real data are

• ξ parameter can be naturally included in theL2 formulation. Then it simply becomes yet another

argument for the optimization. ForL1 it is necessary to seek for other means of estimation as

following;

• normalization by matching the variances of the produced signals and their fit residuals. This is the

simplest approach but the analysis of occurring bias is necessary;

• Bayesian approach: either to find the coefficient having maximal probability (i.e. to find MAP),

or sample model space and find model average based on different possible values of the coefficient.

Bayesian approach requires specification of prior pdf of the coefficient, thus can be arbitrarily biased.

Taking uniform probability would lead to a maximum likelihood solution;

CHAPTER 6

MULTIMODAL IMAGING: SIMULATION STUDY

This works every time, provided you’re lucky

– Unknown soul-mate

As previously emphasized, any novel methodology has to be validated first on the dataset with

known characteristics of the noise and of the signal of interest (i.e. of spatio-temporal signals of the

neuronal activation in case of neuroimaging). Due to the absence of a realistic phantom study involving

covered here brain imaging modalities, it was necessary to simulate the signal and noise conditions. This

chapter describes the protocol used to simulate the datasetand provides analysis of the results obtained

using different localization methods including the ones presented in the preceding chapter. Results of the

analysis using some conventional multimodal methods (e.g.fMRI conditioned DECD) andL2 norm misfit

methods presented in the previous chapter follow.

6.1 Simulated Dataset Generation

Simulated dataset consists of an ROI region of the brain uniformly sampled for possible source locations

and the corresponding simulated brain imaging signals (EEG,MEG and fMRI). Temporal sampling of

the source spaceQ was taken to be 16 [Hz], which allowed to represent simulated neuronal activations as

truncated Gaussian with the deviation of 50 [ms].

6.1.1 Forward Modeling

In this study, conductivity boundaries and cortical surfaces were determined from MRI anatomy of a

template brain [30] (Fig. 6.1). MRI scan, tessellated surfaces, and originalE/MEG electrodes locations

(181 EEG and138 MEG electrodes) (Fig. 6.2) were provided along withBrainstormsoftware package

[106]. Realistic BEM model with 3 compartments (brain+cerebral fluid, skull, scalp with conductivities

0.33, .0042, and0.33 respectively) was used to approximate the solution of the forwardE/MEG problem

for the30 sensors of eachE/MEG modality which were located in the vicinity of the ROI.

“Hand area” of M1 is the area of interest for this simulation study. Therefore appropriate region

defined by239 out of10, 000 vertices of the whole cortical surface was selected (Fig. 6.3). Mean distance

between any two sampled source points within selected ROI was4.3 mm. The furthest distance between
51
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Figure 6.1 3 slices of MRI with marked fiducial points (Screenshort from Brainstorm [106])

any two points within ROI constituted47.4 mm. Region of interest (“Hand area”) was reported to be

considerably smaller - up to18 mm [39] and lie around theΩ shaped “knob” covered by the selected ROI

(Fig. 6.3).

Space around ROI cortical area was sampled with the resolutionof 2 [mm] to generate895 possible

source locations, which also constitute a modeling space forfMRI signal (Fig. 6.4) and serve as locations

for dipoles generatingE/MEG signals.

Each possible source location was characterized with the orientation of a normal of a closest vertex

on the surface of ROI. Such orientation was used for forward modeling of E/MEG signals using pre-

computed BEM models.
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Figure 6.2 MEG (grey) and EEG (yellow) electrodes locations along with tessellated brain volume
into 4 boundary structures: (listed from the inside out) white/grey matter boundary (cortex boundary),
inner skull, outer skull, and scalp surfaces (Part of the skull and scalp surfaces displayed transparent for
visualization purposes. Screenshort from Brainstorm [106])

6.1.2 Additive Noise

Simulation studies often generate additive noise contaminating clean signal using very simplistic models

such as Gaussian white noise. Because suggested fusion methodology relies on spatio-temporal analysis of

the data, such noise modeling would be overly simplistic forthe goals of current study. That is why simple

Gaussian noise and realistic noise from experimental data were considered. Realistic noise was obtained

from the epochs of EEG, MEG and fMRI datasets collected during “rest” periods of the experiments.

Such data were hoped to bear minimal amount of the signals corresponding to spontaneous neuronal

activity, nevertheless careful pre-processing was required to eliminate signal components which were

caused by muscle artifacts, or had prominent localization,thus unlikely to be a part of instrumental or

even neurological noise. The details of carried preprocessing are covered in the Appendix D.

6.1.3 Simulation Protocol

Datasets/Activations: Source space (Q) consists of895 possible source locations during 1 [sec] and at a

sampling rate of 16 [Hz].E/MEG signals were simulated accordingly for a given period of time (i.e.

1 [sec]). FMRI signal, due to its time-lagged hemodynamic response was modeled at a temporal

sampling rate of 1 [Hz] (TR=1 [sec]) for the duration of 10 [secs].

Totally 5 datasets were generated. First4 datasets consist of non-overlapping spatially activations,
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Figure 6.3 Contralateral to the right hand central sulcus along with pre-and post-central gyri (area in
red) were selected as the region of simulated neuronal activations faking the response to motor actions.
The choice of such region is directed by different imaging studies of detected elicited neuronal responses
in response to motor actions of the hand and/or fingers [42, 198]. (Screenshort from Brainstorm [106])

i.e. when only a single activation could appear in a voxel at some random moment in time. These

datasets have different number of active sources randomly (spatially and temporally) chosen to be

active: [ 1, 10, 100, 895 ] sources. The last dataset has10 randomly activated locations with a

following within 100–300 [ms] second activation at the same spatial location1. Activations in all

cases were modeled by a truncated (at10% of area) Gaussian with the deviation of 50 [ms]. Each

dataset has30 epochs, which differed by the randomly chosen source temporal and spatial locations

confirming dataset requirements;

E/MEG type: Both EEG and MEG signals are considered (one at a time) for the fusion with fMRI signal;

Noise Type: Two types of noise are used: empirical (as described in Section 6.1.2) and Gaussian white

noise;

Noise Level: Due to the fact that signals of interest are sparse in time, there is no sense to characterize

noise level as the ratio between signal power and noise power. Thus the amount of noise added

1Datasets were given “codenames” NONOVERLAP1, NONOVERLAP10, NONOVERLAP100,
NONOVERLAP895, and OVERLAP10 accordingly
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(a) Cortical Mesh (b) Cortical Mesh and Surrounding Voxels

Figure 6.4 Region of interest which includes “hand area” of M1 is a source space for modeled neuronal
activations

to a signal is defined in terms of the ratio between noise deviation and maximal signal amplitude:

ε = σǫ/ max(s). Datasets for following noise levelsε = [ 0, 0.1, 0.2, 0.4, 0.6 ] were generated;

Trials: For each instance of the signal, noise type, and noise level30 trials (runs) were generated, so

the same underlying signal was contaminated with different noise samples. Further, epochs were

averaged. Such transformation reduces noise variance by a factor of
√

30. That was done to boost

SNR of the acquired signals – a common practice in neuroimaging. In the future, these simulated

trials will be used individually to provide statistical measures for the quality of the solution.

6.1.4 Algorithms Tested

To validate the advantage of the suggested fusion method, itis necessary to compare its performance to

other methods established in the field. For this study we tested L2 norms methods (fixed and variable

orientation) against DECD methods (Section 1.3.2) where the solution at any given point in time is

Q̂ = G+X, (6.1)

where

G+ = WQG⊤(GWQG⊤)−1. (6.2)
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DECD solutions were conditioned using a combination of the following methods

Conditioning of the Inverse: Truncated SVD was used to find stable inverse of(GWQG⊤). Singular

values smaller than the projected noise variance were discarded;

Gain Matrix Normalization: Two possible cases were considered: with and without column

normalization (Section 1.3.2):WQ = Wn =
(

diag (G⊤G)
)−1

;

Relative FMRI Weighting: Following the ideas described in Section 3.3.4, consideredν0 values were

[ 1.0, 0.5, 0.1 ] which correspond to 0, 50, and 90% of relative fMRI weighting.

Such range of conditioning was hoped to cover the variability in possible DECD solutions

conditioned or not (ν0 = 1.0) by fMRI. Besides that, DECD solutions with variable and fixed (to

original) orientations were considered.

6.1.5 Results

To compare between different methods an error metric had to bechosen. In the current study, quality of

the source time line reconstruction is considered to be the primary comparison criterion. Localization

comparison is a much wider topic and will be addressed in the future. Quality of the source signal

reconstruction is measured with a quadratic error measure||Q̂ − Q||22 over the source locations with

present activation. Quadratic error is further normalized by the squared norm of the source||Q||22 to

characterize the quality criterion as a relative amount of noise energy brought into the source estimate. To

summarize,E = ||Q̂−Q||22/||Q||22 and thus its minimal valueE = 0 corresponds to the perfect restoration

of the sources time course. For each epoch, best result across differently conditioned (as described in the

previous section) DECD solutions was chosen.

Optimization ofL2 cost function (5.4) was carried out via conjugate gradient with a line search,

which allows to avoid the use of the Hessian which is of unfeasibledimension size for this task. A set of

α = [ 0.5, 1, 10] for a tradeoff betweenE/MEG and FMRI fit were used. Only the best result is reported in

the plots.

Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8, and Fig. 6.9 present the comparison between the results achieved

using FMRI conditioned DECD methods andL2 -Fusion method suggested in this work. Plots show

mentioned above criterionE for bothE/MEG signals separately (each one owns a row) and with different

types of the noise used for modeling of the signals. As it is seen from all of the plots, novel method often
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outperforms DECD providing higher quality source signal reconstruction with a lighter influence of the

noise level. As expected, the increase in the error of reconstruction closely follows the increase in number

of activated sources.L2 method provides much better solution in the case of sources spatially overlapping

(Fig. 6.9).

Surprisingly, there is a strong difference between EEG and MEG results. There is a much higher

reconstruction error of DECD estimates in case of MEG, especially for high noise values and a large

number of activations. Such difference can possible be explained by the fact that a large part of the source

space is located on the surface of pre-motor and post-motor gyri, which means that such sources are

radially oriented to the skull surface. MEG sensitivity forimaging of such sources is known to be poor

even in the cases of realistic head modeling (Section 1.1). Minimum norm solution thus discards such

activations in favor of the minimal norm regularization term. L2 norm method doesn’t explicitly suppress

such activations if they comply with the reconstruction of fMRI signal. In the future work, regional

sensitivity analysis will be carried out to verify such explanations. Additional simulations utilizing higher

number of sensors might reveal the other source of such difference.

The nature of the added noise (Empirical vs simulated Gaussian) does not seem to affect the results

much. This fact supports the choice of Gaussian distributionfor the creation of simulated datasets.

Nevertheless it is important to continue comparing results with empirical and simulated noise, because

some other performance characteristics (e.g.localization quality) might reveal the difference.
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Figure 6.5 Dataset NONOVERLAP1: Solutions comparison.L2 -Fusion plots are intentionally shifted
a fraction for ease of observation.
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Figure 6.6 Dataset NONOVERLAP10: Solutions comparison.
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Figure 6.7 Dataset NONOVERLAP100: Solutions comparison.
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Figure 6.8 Dataset NONOVERLAP895: Solutions comparison.
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Figure 6.9 Dataset OVERLAP10: Solutions comparison.

CHAPTER 7

FURTHER RESEARCH

There is no such thing as failure, only results, with some

more successful than others

– Jeff KellerAttitude is Everything, Inc.

Future work requires further analysis of the simulated datato get a better control over the suggested

novel methods, and a better understanding of noise and experimental conditions which could provide

stable source reconstruction and localization. Future directions include

• Verify L1 -Fusion method on the simulated datasets. So far onlyL2 methods were tested on the

somatotopy simulated data (preliminary results of usingL1 -Fusion on other simulations were

reported elsewhere [63]);

• Incorporate, and verify advantages of additional constraints (e.g.smoothness in time or in space) in

the fusion cost function;

• Extend the models to handle cases of a slight spatial misalignment betweenE/MEG sources and

fMRI BOLD signal activations;

• Choose or devise an appropriate localization technique to extract spatio-temporal activation

locations from the estimated source time courses;

• Analyze complex activation patterns and cover wider area including SMA, PMA, and SI;

• Verify approaches suggested in Section 5.5 before applyinganalysis methods to empirical data.

After satisfactory results achieved on the simulated data, it will make it reasonable to apply the

suggested methods to the empirical data in attempts to obtain trustworthy results. Thus next coarsely

grained research tasks should be taken care of

• Elaborate experiment design and acquisition protocol whichwould allow high resolution spatio-

temporal multimodal analysis;

• Estimate empirical HRF for the activations in the areas of interest;
63



64

•
A

pply
suggested

m
ultim

odal
m

ethods
to

the
em

pirical
data

to
r

ecover
fine

som
atotopy,

and
to

com
plete

the
challenge

–
recover

the
tem

poralsequence
ofac

tivated
fingers.

APPENDIX A

FREE SOFTWARE GERMANE TO MULTIMODAL ANALYSIS OF EEG/MEG/FMRI DATA

Forward EEG/MEG MRI † fMRI Environment
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do
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Brainstorm [106]
√ √ √ √ √ √

⇋⇋⇋

√ √

NeuroFEM [129]/Pebbles
√ √ √ √ √ √ √ √

⇋⇋⇋

√ √

BioPSE [18]/SCIRun [160]
√ √ √ √ √

⇋⇋⇋

√
⇋⇋⇋

√

Brainvisa/Anatomist [146]
√ √ √ √ √ √ √

FreeSurfer [46]
√ √ √ √ √ √

Surefit [180]
√ √ √ √ √

Brainsuite [163]
√ √ √ √ √

EEG/MEG/MRI tlbx∗ [192]
√ √ √ √

⇋⇋⇋ ⇋⇋⇋ ⇋⇋⇋ ⇋⇋⇋

√ √ √

MEG tlbx∗ [124]
√ √ √ √ √ √ √ √ √ √

EEGLAB/FMRILAB [40]
√ √ √

†An extensive MR segmentation bibliography is available online [131].
‡POSIX includes all versions of Unix and GNU/Linux. Most POSIX packages listed use X Windows for their graphical output.
∗Matlab Toolbox.
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APPENDIX B

CANONICAL FORM FOR LP

Above we have freely used the minimum operator in formula likea = min(b, c), the absolute value

function y = |x|, and other constructs not allowed in the canonical form of a linear program. In this

section we describe a general technique for reducing a systemof linear equalities and inequalities which

include minimization of theL1 norm, | · | andmin(·, ·) operators, along with a linear objective function,

into a linear programming problem in standard canonical form.

B.1 Absolute Value

Commonly accepted way to deal with absolute value functiony = |x| in LP is to representx as a difference

of two non-negative numbers, with|x| as their sum. Minimization of the sum would force one of them to

become0, with the other corresponding to|x|:

x = x+ − x− (B.1)

|x| = x+ + x− (B.2)

x+ ≥ 0 (B.3)

x− ≥ 0 (B.4)

while minimizing|x|

B.2 Minimal Value

To obtaina = min(b, c) we first relax it to

a ≤ min(b, c), (B.5)

Inclusion of a−a term in the objective function will lead to maximization ofa thus achieving the

necessary equality. Equality (B.5) can be easily represented in a form suitable for LP
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a − b ≤ 0

a − c ≤ 0

Approximation of l2 norm in LP

The magnitude of a dipole with moment vectorm = (x, y, z) is ||m|| =
√

x2 + y2 + z2. We assume that

FMRI readings are related linearly to dipole magnitudes. In order to fit this into an LP framework, we

need a way to approximatee = ||m|| within an LP. Our solution is to note that themin(·, ·) and modulus

| · | functions can be used freely in a LP and then reduced to canonical form using the transformation

described below. For our method, let{Ri} be a set of rotation matrices. To approximate||m|| we let

ei = ||Rim||1 e = min
i

ei (B.6)

where|| · ||1 denotes thel1 norm. These can simply be added to the linear programming problem,

enforcing the relatione ≈ ||m||. We can increase the number of matrices in the set to improve the accuracy

of this approximation, at the expense of computational efficiency.



APPENDIX C

3D RIGID TRANSFORMATION VIA QUATERNIONS

To find the minimum of the squared error functionε(R,v) =
P

∑

i

(xM
i − xE→M)2 (Section 3.1.1), it is

necessary to calculate a principal eigenvector

r = max eigenvector





tr(Σ) ∆⊤

∆ Σ + Σ⊤ − tr(Σ)I3
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The eigenvectorr can be assumed to be normalized (unit length). Regarded as a quaternion,r =

[r0, r1, r2, r3]
⊤ uniquely defines the rotation. This can be converted into a conventional rotation matrix

R =











r2
0 + r2

1 − r2
2 − r2

3 2(r1r2 − r0r3) 2(r1r3 + r0r2)

2(r1r2 + r0r3) r2
0 + r2

2 − r2
1 − r2

3 2(r2r3 − r0r1)

2(r1r3 − r0r2) 2(r2r3 + r0r1) r2
0 + r2

3 − r2
1 − r2

2











.

The translation vector is thenv = x̄M − Rx̄E.
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APPENDIX D

DATA PREPROCESSING TO OBTAIN EMPIRICAL NOISE SAMPLES

Raw EEG and fMRI data collected during rest periods had to be pre-processed before being added to the

generated signal. MEG noise signal was taken from the phantom study, thus by definition it didn’t contain

any artifacts and only instrumental noise. That gives MEG additional advantage and first two steps of

preprocessing were omitted for MEG signal. The following processing took place:

Filtering To prepareE/MEG signals for the next preprocessing stage, rawE/MEG (Fig. D.1) data was

filtered using bandpass filter to allow only0.2 − 30 Hz frequency components. Similar signal

preprocessing is usually carried in conventional brain imaging data analysis to eliminate frequencies

irrelevant to the design and to the expected neuronal response (e.g.DC components, slow drifts,

power-line background).

Irrelevant features removal ICA (Infomax [16]) has been applied [139] toE/MEG data to extract the

sources which are different from simple noisy components andrather correspond to some electro-

physiological activity (e.g. muscle noise, eye movements) which is not of interest of the given

study. Visual inspection of the components time courses (Fig. D.3) and projected topographies

(Fig. D.4) allows to identify the components which are artifacts due to electro-physiological activity

(components 1, 4), relevant for the events of the experiment(components 8, 9, 20, 22) or just

sharply localized (components 11, 19), thus they are highlyunprobable to be noise components for

our purpose;

Downsampling To prepareE/MEG noise signals for down-sampling,E/MEG time-trends were filtered

using bad-pass filter to permit only0.5 − 8 Hz frequency components. Upper limit of8 Hz was set

to match the temporal resolution of the modeling environment (16 samples/sec). fMRI time series

was high pass filtered> 0.1 Hz to remove present time trends;

Normalization To gain control of the amount of noise added to the simulated signals, all noise signals

were normalized to have unit variance (Fig. D.5). Although extractedE/MEG noise signal indeed

has distribution close to Gaussian (Fig. D.6), its temporal characteristics show a prevalence of lower
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frequency components (Fig. D.7). To reduce impact of correlations across channels, noise samples

were taken with arbitrary temporal delay varying across sensors.

117

+−

Scale

10 11 12 13 14 15
   

FPZ
O2 
O1 
T6 
P4 
PZ 
P3 
T5 
T4 
C4 
CZ 
C3 
T3 
F8 
F4 
FZ 
F3 
F7 

FP2
FP1
OZ 
A2 
A1 

Figure D.1 Raw EEG signal shows a lot of present high frequency noise, low frequency trends and
artifacts present in the signal.
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Figure D.2 Before any processing raw EEG signal is bandpass filtered.
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Figure D.3 ICA analysis allows to separate the multichannel signal into the components such as muscle
artifacts (top component), electrical line noise, slow trends, etc.
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Figure D.4 Using the separation matrix obtained during ICA it is possibleto visualize influence of each
component on each sensor, thus creating topographic maps.
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Figure D.5 Empirical EEG noise samples after all preprocessing stages.
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Figure D.6 Data histogram (top left), QQ plot to the matching Gaussian (topright) and statistics (bottom)
of the noise components extracted from the empirical EEG data.
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Figure D.7 Power spectrum of extracted empirical noise shows present correlations at lower frequencies
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