ABSTRACT

BOOSTED SPATIAL AND TEMPORAL PRECISION IN FUNCTIONAL BRAIN IMAGING
VIA MULTIMODAL ANALYSIS

by
Yaroslav Halchenko

Localizing neuronal activity in the brain, both in time amdspace, is a central challenge to progress in
understanding brain function. Non-invasive functionaibrimaging has become an important tool used
by neurophysiologists, cognitive psychologists, coggitscientists, and other researchers interested in
brain function. In the last five decades the technology ofimgasive functional imaging has flowered, and
researchers today can choose from EEG, MEG, PET, SPECT, M&IMIRI. Each method has its own
strengths and weaknesses, and no single method is best fuitdl experimental or clinical conditions.
EEG and MEG each provide data with high temporal resolutmegsured in milliseconds), but limited
spatial resolution. In contrast, fMRI provides good spdiigl relatively poor temporal resolution.

Because of the inadequacies of individual techniques, teeénereased interest in finding ways to
combine existing techniques in order to synthesize thegths inherent in each. Number of techniques
refining EEG and MEG analysis by exploring the data from MR aités (MRI, fMRI) has been
developed in order to increase localizatiprecision Demonstrated localizatioaccuracyremains a
distant goal confounded by the lack of ground truth in anyisgaexperimental multimodal protocol and
the lack of a complete model of the BOLD signal.

The goal of this dissertation is to show that it is possibl®@lbtain reliable estimates of neuronal
activity at superior spatio-temporal resolution by conmgrEEG/MEG with fMRI data whenever forward
models of the signals are appropriate to describe the daéarims of underlying neuronal processes. The
proposal surveys various aspects of uni- and multimodadjinta discusses obstacles confronted with on
the way to reliable multimodal methods, proposes novel@gugres for multimodal imaging, describes a
chosen neuroimaging problem to persuade with the suggesttbds, and, finally, presents preliminary

results on the simulated data.
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INTRODUCTION

A great challenge in any research of brain functioning is &wehnon-invasive means to asses the
characteristics of neuro-physiological processes ingidédorain at a fine temporal and spatial resolution.
Miscellaneous assumptions of the nature of neuronal sgealneuronal activity to be measured and
modeled as biomedical signals which can be registered bsraketypes of non-invasive brain imaging
techniques such as electroencephalography (EEG), magmefohalography (MEG), nuclear magnetic
resonance (NMR) imaging (MRJ) positron emission tomography (PET), near-infrared spscopy
(NIRS), and others.

All of the mentioned modalities could be brought into twoeggiries: passive and active. Passive
methods (EEG and MEG) try to register changes in the ambisvita@ament which are caused by
neuronal processes inside the brain. Active methods (ssi8hRd, PET and NIRS) create a controllable
environment which changes under underlying neuronal anskiply other related physiological
processes. Therefore most of the time they do not captunéisex neuronal activity directly, but rather
register changes caused byatg.consumption of the contrast agents, blood oxygenation angé of
blood flow. Captured brain signals by either passive or aatnelalities are usually non-stationary
signals distorted by noise and interferences. Moreovey fiessess characteristics specific to the
technique (modality) used to acquire it, so it is crucial &wéna clear understanding of their nature to
perform advanced signal analysis.

EEG has been widely used in research and clinical studies #ie mid-twentieth century. Although
Richard Caton (1842-1926) is believed to have been the firsictard the spontaneous electrical activity
of the brain, the term EEG first appeared in 1929 when Hans Beagpsychiatrist working in Jena,
Germany, announced to the world that “it was possible torcetioe feeble electric currents generated
on the brain, without opening the skull, and to depict theapbically onto a strip of paper.” The first
SQUID-based MEG experiment with a human subject was coeduat MIT by Cohen [31] after his
successful application of Zimmerman’s SQUID sensors taiaeq magneto-cardiogram in 1969. EEG
and MEG are closely related due to electro-magnetic cogplmd termEMEG will be used to refer

generically to either EEG, MEG, or both altogether. AlthougEG and MEG are related, there are

LFrom WordNet (r) 2.0 (August 2003) [wn]: noninvasive adj : relgtio a technique that does not involve puncturing
the skin or entering a body cavity [ant: invasive]
2The term MRI generally substituted NMR so that the public could more easijytaderm for an imaging modality

without the word "nuclear” in it
1
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some subtle differences which will be outlined further ie text. BothEMEG provide high temporal
resolution (measured in milliseconds) but have a majortéitian: the location of neuronal activity can
be hard to pin-point with confidence. That is because suchafitie$ acquire data which is created as
a super-imposition of electromagnetic fields outside offtead which were caused by the brain signals;
therefore in order to obtain characteristics of the origimeuronal activations the inverse problem has to
be solved. Localization of neural activity frofVMEG data is usually called adectromagnetic source

imaging(EMSI) and has been a challenging area of research for thedaple decades.

MRI

b

Figure 1 Non-invasive functional brain imaging equipment: from BlIemnEEG to expensive MRa.
Equipmentb. Typical Data

Opposed t&MEG, MRI modality has a natural capability to proviehevivo view on brain structure
and function. Nuclear Magnetic Resonance (NMR) was indepehddiscovered by Felix Bloch and
Edward Purcell in 1946, so they both received a Nobel Prizghiysics in 1952. Only in 1970, Raymond
Damidian discovered that the structure and abundance @rwatthe human body is the key to MR

imaging (MRI). It was Paul Lauterbur in 1973, however, who lempented the concept of tri-plane
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gradients used for exciting selective areas of the body &,and Gz). P. Lauterbur along with Peter
Mansfield were awarded a Nobel Prize in Physiology or Meéian2003 for the invention of MRI, which
made a huge impact on medical imaging.

Since the invention time, MRI techniques evolved. Nowadayage intensity observed in MR
images can be determined by various tissue contrast merharsuch as proton density, T1 and T2
relaxation rates, diffusive processes of proton spin deiphgaloss of proton phase coherence due to tissue
magnetic susceptibility variations. Although MRI is capabF detecting transient or subtle changes in
the magnetic field in the cortical tissue caused by neurartadagion [19, 196], direct application of MRI
to capture functional activity remains limited due to a viemy signal-to-noise ratio (SNR) which is why
MRI is often labellecanatomical Its applicability for functional studies was not reveafeda while.

It was toward the end of the 19th century, when Charles Roy andé3aherrington [151] provided
the first evidence supporting the connection between naliamtivity and cerebral blood flow. In 100
years, after MRI technique had received much of apprecidioanatomical studies, Ogawa et al. [136]
showed that MRI can reflect blood deoxygenation usingcdBtrast. Such finding laid down a framewaork
for functional brain imaging using MRI [17, 137, 150] by caftg blood oxygenation level-dependent
(BOLD) signal without necessity to use any reactive agehtss making functional MRI (fMRI) the first
truly non-invasive functional brain imaging modality whibears rich spatial information. Due to the
deliberateness of the hemodynamics in comparison to thenalactivation time course, BOLD fMRI

time resolution is coarse but acceptable for many typesuolies.

Problem Statement

Any single technology mentioned above is yet to become teedimice for all functional brain imaging
necessities. High temporal resolutionE#IEG modalities is crucial in many event-related experiments
and it cannot be achieved using BOLD fMRI, which delivers sigrespatial resolution, which, in turn,
cannot be reliably achieved usibBMEG. Therefore it is beneficial to have methodology that chdate
the information obtained from different brain imaging miiiiss. Such information integration is hoped
to provide consistent and reliable localization of the oeat activity with higher spatial and temporal
precision that cannot be achieved using any of the existiodalities alone.

The main obstacle in the development of multimodal methogslving fMRI nowadays seems

to be the absence of a universal model for hemodynamics,entherneuronal activation is the primary
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input factor. Simplistic models can be used in particulatances of multimodal analysis where they are
supported by the empirical evidence from simple experisent

Due to the difficulties in assessing ground truth of a comdbsignal in any realistic experiment—a
difficulty further confounded by lack of accurate biophydimodels of BOLD signal, any fusion problem
has to be tackled with caution. Reported progress on simglergrents where there is a small number
of isolated focal sources of activity which are consisteptiesent in all relevant modalities, and phantom
studies can already provide basic test-ground to checkatldity of the developed fusion methods.

To summarize, now it seems to be the right time for the devetayg of fusion methods which are
comprising empirically supported models or are flexiblewggtoto incorporate future elaborated models
of the BOLD response. A convincing demonstration of incrdas=curacy using multimodal integration

for a complex protocol would constitute a major successefigid.

Objectives and Scope of the Work

The current work addresses the problem stated: developamehntalidation of a multimodal functional
brain imaging technique to gain intrinsic advantages ohased modality. Brain imaging experiment
(motor somatotopy) is chosen to comply with the requiremeotr multimodal analysis which is
formalized in the thesis. In the present work few differenéams to perform multidimensional
regression to merge signals frofMEG and fMRI are approached (non-linear optimization, Linear
Programming, Sylvester equation solvers). Further, tlorieal and methodological difficulties of
fusing heterogeneous signals are highlighted and explagkethe end, the hope is thabrrect fusionof
multimodal data will allow previously inaccessible sp&timporal structures to be visualized and

formalized and thus eventually become a useful tool in biraaging research.

Organization
Due to the fact, that source localization techniques us&M#BI served as a starting point for subsequent
multimodal analysis, the initial focus concerns reviewimathematical approaches for solving the
localization problem inEEMEG. Thus, Chapter 1 highlights popular methods, formulagesoical
problems of EMEG source localization, and describes how they have beetkatl by various

researchers.



5

In order to obtain multimodal data, is it important to keeprimd obstacles on the way to perform
truly multimodal experiment. Chapter 2 addresses the pnablevhich are inherent in concurrent
multimodal experiments due to the interference betweemasigcquisition technologies used HMEG
and MRI.

Chapter 3 covers existing brain imaging techniques whichleynpultiple modalities. The review
starts with the description of benefits achieved by usingaan@al MR modalities which do not carry
any functional (temporal) information but neverthelessca@l in the fusion process due to their high
spatial resolution. In particular, it is discussed how armatal MRI can be combined with existing EMSI
techniques in order to increase the localizatwacisionwithout introducing any additional functional
information. Then, the most recent and promising ways incivlihese signals can be combined with
fMRI are documented. Specifically, attention is paid to datree analysis, decomposition techniques,
equivalent dipole fitting, distributed sources modelingaimforming, and Bayesian methods.

Limited knowledge of BOLD fMRI signal restricts the set of bramaging experiments which can
be successfully and reliably analyzed using multimodalhoes. Chapter 4 motivates and presents the
choice of suitable brain imaging experiment, which is st to be used as a validation of the introduced
multimodal methods, which are presented in Chapter 5. Tdywsetausibility of the new suggested
methods, they are probated on the simulated data with knbaracteristics. Chapter 6 overviews details
of the simulated dataset generation and discusses anaygsiss using new and some existing multimodal
imaging methods.

Finally, Chapter 7 gives a brief conclusion and drafts a plafuture research to further support
the thesis and complete this dissertation. Throughout theuscript a consistent and complete set of
mathematical formulations that are stand alone is providegether with appropriate context for this

notation into existing literature.



CHAPTER 1

UNIMODAL SOURCE LOCALIZATION

The goal of physicists is to find a use for every branch of
mathematics. The goal of mathematicians is to invent a new

field of mathematics that has absolutely no practical use

— Unknown Professor
fMRI became a very popular tool for brain imaging due to itshsgatial resolution. A vast amount

of methods has been developed to achieve reliable spataization of neuronal activity, or to be exact,
of its secondary effects such as blood flow (perfusion) olgexytion (see [98] for the review of existing
methods). In turnEMEG signals have no definite solution to gain reliable spédiadlization. Therefore
following section covers the specifics’MEG signals, the premises for conjo1EG analysis, and the

EMSI techniques which have been adopted later for use inmmadial analysis with fMRI data.

1.1 EEG and MEG: Specifics
The theory of electromagnetism and Maxwell's equationgleurthe assumption of quasi-stationakjty
theoretically defines the relationship between observeghetic and electric fields induced by the ionic
currents generated inside the brain (see [113, 127, 138ptoe information about the biophysics of
EIMEG signals).

The similar nature of the EEG and MEG signals means that magtyads of data analysis are
applicable to bothEEMEG modalities. Although the SNR d/MEG signals have improved with
technological advances, and some basic analysis has bdemped by experts on ralWMEG data via
visual inspection of spatial signal patterns outside oftite@n, more advanced methods are required to
use data efficiently. During the last two decades mEM\EG signal analysis techniques [121] have been
developed in order to provide insights on different levdlparceptual and cognitive processing of human
brain: ERP (event related potential) in EEG and ERF (eventagleld) in MEG, components analysis
(PCA, ICA, etc), frequency domain analysis, pattern analysis, and sitnigleanalysis to name the few

[83, 173, 175]etc. Source localization techniques were first developed for MieGause the head model

LA signal is quasistatic if it does not change its parameters in time. The nomsigti@rm present in theEMEG
physical model is relatively small and can be considered zero in the cdraignal frequencies which are captured
by EMEG. See [64] for a more detailed description. 6
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required for forward modeling of magnetic field is relatiwsimple. Source localization using an EEG
signal has been difficult to perform since the forward pr@p@g of the electric potentials is more

complicated. However, recent advances in automatic MRI segation methods together with advances
in forward and inverse EEG modeling, have made EEG sour@dization plausible.

The theory of electromagnetism also explains why EEG and Mitfaals can be considered
complementary, in that they provide different views on oftlhe same physiological phenomenon
[32, 64, 113, 194]. On one hand, often accented differentieatsMEG is not capable of registering the
magnetic field generated by the sources that are orientadllyatb the skull surface in the case of
spherical conductor geometry. On the other hand, MEG haadkantage over EEG in that the local
variations in conductivity of different brain matteg.¢. white matter, gray matter) do not attenuate the
MEG signal much, whereas the EEG signal is strongly infludrmethe variations in conductivities of
different types of brain matter and of the skull in particB38]. The orientation selectivity, combined
with the higher depth precision due to homogeneity, make Mip@&mnal for detecting activity in sulci
(brain fissures) rather than in gyri (brain ridges). In castya registered EEG signal is dominated by the
gyral sources close to the skull and therefore more radias teurface. Yet another crucial difference is
dictated by basic physics. The orthogonality of magneta eectrical fields leads to orthogonal maps of
the magnetic field and electrical potential on the scalpaserf This orthogonality means that an
orthogonal localization direction is the best localizatairection for both modalities [32, 114]. These
complementary features of the EEG and MEG signals are whae nisem good candidates for
integration [12, 38]. The conjoifMEG analysis has improved the fidelity of EMSI localizationt bas
not entirely solved the problem of source localization aguliy. It is the reduction of this remaining
ambiguity where information from other brain imaging maoties may play a valuable role.

It is worth noting another purely technical advantage of Mia@r EEG: MEG provides a reference-
free recording of the actual magnetic field. Whenever EEG@srsapture scalp potentials, a reference
electrode must be used as a ground to derive the signal oégttéd reference signal chosen in such a way
can be arbitrarily biased relative to the EEG signal obsemxe=n when no neuronal sources are active.
The unknown in an MEG signal obtained using SQUID sensofastsa constant in time offset—the DC
baseline. This baseline depends on the nearest flux quantuniich the flux-locked loop acquired lock
[187, pg. 265]. Although the choice of a reference value iGE#®d the DC line in MEG do not influence

the analysis of potential/field topographic maps, they doaat inverse solution algorithms which assume
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Figure 1.1 The international 10-20 EEG system seen from (A) left and (®)va the head. A = Ear
lobe, C = central, Pg = nasopharyngeal, P = parietal, F = dtpfp = frontal polar, O = occipital.
(C) Location and nomenclature of the intermediate 10% eddess, as standardized by the American
Electroencephalographic Society. (Borrowed with perrois§iom [113])
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zero net source in the hedds. zero baseline. In general, the simple average referenossitre electrodes
is used and it has been shown to be a good approximation tougnegference signal [121, sec. 2.2].
Even if the reference value (baseline) is chosen correlotih conventional EEG and MEG face
obstacles in measuring the slowly changing DC componenh@fsignal in the low frequency range
(f < 0.1Hz). In the case of EEG the problem is due to the often used auypif the electrodes via
capacitors, so that any DC component (slowly changing loashe EEG signal is filtered out. That
leaves the researcher with non-zero frequency componénite signal, which often correspond to the
most informative part of the signal as in the case of coneealiERP or frequency domain analysis. The
DC-EEG component can be registered by using sensors wittt dioeipling and special scalp electrodes
that are gel filled to eliminate changes of electrical impegaat the electrode-skin interface which
can cause low frequency noise in the EEG signal. AlthoughMBE& system does not require direct
contact between sensors and skin, it is nevertheless $ubjé¢ f sensor noise which interferes with
the measurement of the neuronal DC fields. In the last dec&®BG has been methodically refined
by employing controlled brain-to-sensor modulation allagvthe monitoring of low-frequency magnetic
fields. Formalized DGIMEG techniques make it possible to perfobfIEG studies, which rely on the
shift of DC and low frequency components of the signal; congmas that occur, for example, during

epileptic seizures, hyperventilation, changes in vigiastates, cognitive or motor tasks.

1.2 Forward Modeling

The analysis oEf/MEG signals often relies on the solution of two related protse Theforward problem
concerns the calculation of scalp potentials (EEG) or migields near the scalp (MEG) given the
neuronal currents in the brain, whereas itneerse problemnvolves estimating neuronal currents from
the observeddMEG data. The difficulty of solving the forward problem is refed in the diversity of
approaches that have been tried (see [125] for an overviewaified analysis of different methods).

The basic question posed by both the inverse and forwardeganshis how to model any neuronal
activation so that the source of the electromagnetic fietdbmamapped onto the obserieEG signal.
Assuming that localized and synchronized primary currenésthe generators of the obsenib EG
signals, the most successful approach is to model-thesource with a simple Equivalent Current Dipole
(ECD) q; [24], uniquely defined by three factors: location represdrity the vector;, strengthy;, and

orientation coefficient®);. The orientation coefficient is defined by projections of tleetor q; into
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L orthogonal Cartesian axe#; = q;/¢;- However, the orientation coefficient may be expressed by
projections in two axes in the case of a MEG spherical modelathe silent radial to the skull component
has been removed, or even, just in a single axis if normality¢ cortical surface is assumed. The ECD
model made it possible to derive a tractable physical madd&lng neuronal activation and observed
EIMEG signals. In case ok simultaneously active sources at tihéhe observed/MEG signal at the

sensorx; positioned ap; can be modeled as
(15, q5,t) Z G(r;(t ~qi(t) +e (1.1)

whereg is alead fieldfunction which relates théth dipole and the potential (EEG) or magnetic field
(MEG) observed at thg-th sensor; andis the sensor noise. In the given formulation, functign; (), p;)
returns a vector, where each element corresponds to thetesdficient at the locatiop; generated by

a unit-strength dipole at positian(¢) with the same orientation as the corresponding projectios af

0;. The inner-product between the returned vector and digod@gth projections on the same coordinate
axes yields g-th sensor the measurement generated by-thelipole.

The forward model (1.1) can be solved at substantial contipnt expense using available
numerical methods [147] in combination with realistic stural information obtained from the MRI data
(see Section 3.1). This high computational cost is accépteinen the forward model has to be
computed once per subject and for a fixed number of dipolditmts but it can be prohibitive for dipole
fitting, which requires a recomputation of the forward mddeleach step of non-linear optimization. For
this reason, rough approximations of the head geometry tanctsre are often useck.g. best-fit single
sphere model which has a direct analytical solution [199hermultiple spheres model to accommodate
for the difference in conductivity parameters across ciifé tissues. Recently proposed MEG forward
modeling methods for realistic isotropic volume condugtdi32, 133] are more accurate and faster than
BEM, and hence may be useful substitutes for both crude acalyinethods and computationally
intensive finite-element numeric approximations. Gemgrdhe solution of the forward problem is

crucial for performing source localization usibstylEG, which is the main topic of the next section.



12

1.3 The Inverse Problem
1.3.1 Equivalent Current Dipole Models
The EMEG inverse problem is very challenging (see [13, 64] for aeraew of methods.) First, it relies
on the solution of the forward problem, which can be companaily expensive, especially in the case
of realistic head modeling. Second, the lead-field functiomom (1.1) is non-linear inr;, so that the
forward model depends non-linearly on the locations ofvatibns. It is because of this nonlinearity that
the inverse problem is generally treated by non-lineamagation methods, which can lead to solutions
being trapped in local minima. In case of Gaussian sensgentiie best estimator for the reconstruction

guality of the signal is the squared error between the obtbamd modele#MEG data:

to M

Era) =YD 3 (x;(t) = Xi(ri a1, )" + AC(r, q), (1.2)

i t=t1 J

whereC(r,q) > 0 is often introduced to regularize the solutid®, to obtain the desired features of the
estimated signalg(g.smoothness in time, or in space, lowest energy or dispersaaod\ > 0 is used to
vary the trade-off between the goodness of fit and the reigatson term.

This least-squares model can be applied to the individoa4points {; = t,) (“moving dipole”
model) or to a block#; < t,) of data points. If the sources are assumed not to changegdilne block
(t1,t2), then the solution with time constaaf(t) = q; is the target.

Other features derived from the data besides plu&G signals as the argumendf (1.1) and (1.2)
are often usede.g.ERP/ERF waveforms which represent averagstEG signals across multiple trials,
mean map in the case of stable potential/field topographinglsome period of time, or signal frequency
components to localize the sources of the oscillationstefrast.

Depending on the treatment of (1.2), the inverse problembeapresented in a couple of different
ways. The brute-force minimization of (1.2) in respect téhparameters andq, and the consideration
of different K neuronal sources, is generally calle@D fitting Because of non-linear optimization, this
approach works only for cases where there is a relativelylsraenber of sourceds, and therefore the
inverse problem formulation is over-determined, (1.1) cannot be solved exactlg (, q) > 0). If fixed
time locations of the target dipoles can be assumed, thelsspace of non-linear optimization is reduced
and the optimization can be split into two steps: (a) noedioptimization to find locations of the dipoles,
and then (b) analysis to determine the strength of the dspdltis assumption constitutes the so-called

spatiotemporal ECD model
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Two other frameworks have been suggested as means of aydidimpitfalls associated with non-
linear optimization: Distributed ECD (DECD) and beamformifidnese two approaches are presented in

detail in the next sections.

1.3.2 Linear Inverse Methods: Distributed ECD

In case of multiple simultaneously active sources, anradtare to solving the inverse problem by ECD
fitting is a distributed source model. The label Distribu2D (DECD) will be used further in the text to
refer to this type of model. The DECD is based on a spatial sagpf the brain volume and distributing
the dipoles across all plausible and spatially small arghagh could be a source of neuronal activation. In
such cases, fixed locations ) are available for each source/dipole, removing the négesisnon-linear
optimization as in the case of the ECD fitting. The forward mi¢d@lel) can be presented for a noiseless
case in the matrix form

X = GQ, (1.3)

whereG, M x LN lead fieldmatrix, is assumed to be static in time. The-th entry of G describes how
much a sensaris influenced by a dipolg wherej varies over all sensors whileraries over every possible
source, or to be more specific, every axis-aligned compovieexvery possible sourcel;; = G(r;, p;).
The vector: contains indices of. such projectionsi.e.z = [i,i + N,i + 2N] whenL = 3, and7 = i
when the dipole has a fixed known orientation. Using this tmtaG. ; corresponds to the lead matrix
for a single dipoley;. The M xT matrix X holds theEIMEG data, while thd. N xT matrix Q (note that
Q,; = q;(t)) corresponds to the projections of the ECD’s moment dntwthogonal axes.

The solution of (1.3) relies on finding an inver€e™ of the matrixG to express the estima@ in
terms ofX

Q=G*X, (1.4)

and will produce a linear maK — Q. Other than being computationally convenient, there isnmath
reason to take this approach. The task is to minimize the &mation (1.2), which can be generalized by

the weighting of the data to account for the sensor noisetaravariance structure:

£(Q) = tr((X - GQ) W' (X - GQ)), (1.5)

whereWy' is a weighting matrix in sensor space.
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A zero-mean Gaussian signal can be characterized by thie siogariance matrixC,. In case of a
non-singularC, the most simple weighting scherWx = C, can be used to account for non-uniform
and possibly correlated sensor noise.

Such a brute-force approach solves some problems of ECD mggdspecifically the requirement
for a non-linear optimization, but, unfortunately, it iotluces another problem: the linear system (1.3) is
ill-posed and under-determined because the number of sampplssible source locations is much higher
than the dimensionality of the input data space (which ceexceed the number of sensoisg, N > M.
Thus, there is an infinite number of solutions for the lingatesm because any combination of terms from
the null space ofs will satisfy equation (1.4) and fit the sensor noise perjecth other words, many
different arrangements of the sources of neural activatidimn the brain can produce any given MEG or

EEG map. To overcome such ambiguity, a regularization terimtroduced into the error measure

£(Q) =£(Q)+X1C(Q), (1.6)

where\ > 0 controls the trade-off between the goodness of fit and th@aegation ternC(Q).

The equation (1.6) can have different interpretations deimg on the approach used to derive it and
the meaning given to the regularization tefifQ). All of the following methods provide the same result
under specific conditions [13, 67]: Bayesian methodology &ximize the posteriop(Q|X) assuming
Gaussian prior ol [11], Wiener estimator with proper, andCg, Tikhonov regularization to trade-off
the goodness of fit (1.5) and the regularization téif@) = tr(QTWngQ) which attempts to find the
solution with weighted byW(;1 minimal 2nd norm. All the frameworks lead to the solution lo¢ thext
general form

G"=(G'WY'G+ \W)'G'Wy!. (1.7)
If and only if Wq andWx are positive definite [62] (1.7) is equivalent to
GT=WqoG (GWqG'™ +A\Wx) ™ (1.8)

In case when viable prior information about the source ithistion is availableQ,, it is easy to
account for it by minimizing the deviation of the solutiontrimm 0 (which constitutes the minimal 2nd

norm solutionG ), but from the prioiQ,, i.e.C(Q) = tr((Q — QP)TWQ(Q —Q,)). Then (1.6) will be
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minimized at

Q=G"X+(I-G"G)Q,=Q,+G"(X-GQ,). (1.9)

For the noiseless case, with a weightegnorm regularizer, the Moore-Penrose pseudo-inverse
gives the invers& ™ = G' by avoiding the null space projections @fin the solution, thus providing a
unique solution with a minimal second no@ = WqG ' (GWoG ')~

TakingWq = Iy, Wx = I, and Q, =0 constitutes the simplest regularized minimum norm
solution (Tikhonov regularization). Classically,is found using cross-validation [57] or L-curve [66]
techniques, to decide how much of the noise power should dneght into the solution. Phillips et al.
[145] suggested iterative method ReML where the conditiexpkctation of the source distribution and
the regularization parameters are estimated jointly. Aaltial constraints can be added to impose an
additional regularization: for instance temporal smoet®[25].

As presented in (1.8)G™ can account for different features of the source or dataesfgc
incorporating them correspondingly inW g andWx. Next data-driven features are commonly used in

EMSI

e Wx = C, accounts for any possible noise covariance structure @t, i§ diagonal, will scale the

error terms according to the noise level of each sensor;
e Wqu = W, = Cg accounts for prior knowledge of the sources covariancesire.
W, can also account for different spatial features

Wq = W, = (diag (GTG))f1 normalizes the columns of the matr& to account for deep

sources by penalizing voxels too close to the sensors [73; 10

e Wq = Wyn, where the-th diagonal element incorporates the gray matter contetite area of
thei-th dipole [144],i.e. the probability of having a large population of neurons tdgaf creating

the detecte@MEG signal;

Wq = (W,"W,)~!, where rows oW, represent averaging coefficients for each source [10]. So

far only geometrical [61] or biophysical averaging matsi¢é2] were suggested,;

W, incorporates the first-order spatial derivative of the imfiP0] or Laplacian form [140].
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Features defined by the diagonal matriceg.(W, andWg,) can be combined through the simple
matrix product. An alternative approach is to pres@&ng, in terms of a linear basis set of the individual
W, factors,i.e. Wq = 11y Wi+ 1o Wym + - - -, with later optimization ofy; via the EM algorithm [144].

To better condition the under-determined linear inversblem (1.4), Phillips et al. [144] suggested
to perform the inverse operation in the space of the larggeheectors of théV q. Such preprocessing
can also be done in the temporal domain, when a similar sabespelection is performed using prior
temporal covariance matrix, thus effectively selecting frequency power spectrum of the estimated
sources.

Careful selection of the described features of data and s@paces helps to improve the fidelity of
the DECD solution. Nevertheless, the inherent ambiguitheinverse solution precludes achieving a high
degree of localization precision. It is for this reason thadlitional spatial information about the source
space, readily available from other functional modalitash as fMRI and PET, can help to condition the

DECD solution (Section 3.3.4).

1.3.3 Beamforming

Beamforming (sometimes called a spatial filter or a virtuaisse) is another way to solve the inverse
problem, which actually does not directly minimize (1.2). b&amformer attempts to find a linear
combination of the input datq; = Fx, which represents the neuronal activity of each digglén the
best possible way one at a given time. As in DECD methods, #xelsspace is sampled, but, in contrast
to the DECD approach, the beamformer does not try to fit all beeoved data at once.

The linearly constrained minimum variance (LCMV) beamforrfi81] looks for a spatial filter
defined ag of size M x L minimizing the output energf®' CyF’ under the constraint that onty: is
active at that timeij.e. that there is no attenuation of the signal of interd8tG.; = 4;,1;, where the
Kronecker deltal,; = 1 only if & = i and0 otherwise. Because the beamforming filrfor the i-th
dipole is defined independently from the other possible ldggandex: will be dropped from the derived
results for the clarity of presentation.

The constrained minimization, solved using Lagrange rpligtis, yields

F= (G, C{G )G, C (1.10)
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This solution is equivalent to (1.7), when applied to a @ndjpole with the regularization term omitted.
Source localization is performed using (1.10) to compute/triance of every dipolg, which, in the case

of uncorrelated dipole moments, is

vg = tr((G.;'CY'G.) ). (1.11)

The noise-sensitivity of (1.11) can be reduced by using thisenvariance of each dipole as normalizing

factorv, = tr((G.ﬁzTC;lGﬁ)‘l). This produces the so-callecbural activity index

o=t (1.12)

Ve

An alternative beamformesynthetic aperture magnetometlySAM [149], is similar to the LCMV
if the orientation of the dipole is defined, but it is quitefdient in the case of a dipole with an arbitrary
orientation. A vector of lead coefficiengg(0) is defined as a function of the dipole orientation. This
returns a single vector for the orientatiéof thei-th dipole, as opposed to the earlier formulation in which

the L columns ofG. ; played a similar role. With this new formulation, the spHiiiger is constructed

1

f(0) =
) g:(0) Cx'gi(0)

gi(0)"(Cx 4+ 2C,)™! (1.13)

which, under standard assumptions, is an optimal lineanasdr of the time course of theth dipole. The
variance of the dipole, accordingly, is also a functiory oépecificallyr,(6) = 1/(gi(9)TC)}1gi(6’)). To
compute the neuronal activity index the original SAM foration uses a slightly different normalization
factorv,.(9) = £(#) " C.£(6), which yields a different result if the noise varianceGn is not equal across
the sensors.

The unknown value of is found via a non-linear optimization of the neuronal attiindex for the

dipole:

va(V)
ve(9)

f = arg max

Despite the pitfalls of non-linear optimization, SAM filieg provides a higher SNR to LCMV by bringing
less than half of the noise power into the solution. In additiSAM filtering results in sharper peaks of

the distribution of neuronal activity index over the volufii&6].
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Having computed,, andv. using SAM or LCMV for the two experimental conditions: pass(y)

and active ¢), it is possible to compute a pseudwealuet for each location across the two conditions

@ _
i = % (1.14)
ve” + v

Such an approach provides the possibility of consideringegrmental design in the analysis BMEG
localization.

Unlike ECD, beamforming does not require prior knowledgehef ntumber of sources, nor does it
search for a solution in an underdetermined linear systetio@s DECD. For these reasons, beamforming
remains the favorite method of many researchers in EMSI andbaen suggested for use in the integrative

analysis o/ MEG and fMRI which is covered in Section 3.3.5.



CHAPTER 2

MULTIMODAL EXPERIMENT PRACTICES

When you build bridges you can keep crossing them

— Rick Pitino
Obtaining non-corrupted simultaneous recordings of EEG iRl is a difficult task due to

interference between the strong MR field and the EEG acrisstystem. Because of this limitation, a
concurrent EEG/fMRI experiment requires specialized desigd preprocessing techniques to prepare
the data for the analysis. The instrumental approachesideddn this section are specific to collecting
concurrent EEG and fMRI data. For obvious reasons MEG and fMR thust be acquired separately in
two sessions. However, even when MR and MEG are used seglhgntiere is the possibility of
contamination from the magnetization of a subject’s mietathplants which can potentially disturb

MEG acquisition if it is performed shortly after the MR exjmeent.

2.1 Measuring EEG During MRI: Challenges and Approaches
Developing methods for the integrative analysis of EEG aRlIfdata is difficult for several reasons, not
the least of which is the concurrent acquisition of EEG an&flself has proved challenging. The nature
of the problem is expressed by Faraday’s law of inductionma tvarying magnetic field in a wire loop
induces an electromotive force (EMF) proportional in sgit@rto the area of the wire loop and to the rate
of change of the magnetic field component orthogonal to tea.aWhen EEG electrodes are placed in a

strong ambient magnetic field resulting in the EMF effecesalundesirable complications arise:

¢ Rapidly changing MR gradient fields and RF pulses may inducages in the EEG leads placed
inside the MR scanner. Introduced potentials may greatgote the EEG signal [77]. This kind of
artifact is a real concern for concurrent EEG/MRI acquisitiDue to the deterministic nature of MR
interference, hardware and algorithmic solutions may be tmbunmask the EEG signal from MR
disturbances. For example, Allen et al. [4] suggested amageewaveform subtraction method to
remove MR artifacts which is effective in case of deterntinigenerative process of a signal [155].
However, it is important to note that time variations of th& Mrtifact waveform can reduce the

success of this method [34, 35]. The problem can be resolvedgh hardware modification that
19
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increases the precision of the synchronization of MR and E¥&Bems [5] or during post-processing
by using precise timings of the MR pulses during EEG wavefameraging [35]. Other techniques
that have been proposed to reduce MR and ballistocardibgraytifacts include spectral domain

filtering, spatial Laplacian filtering, PCA (Fig. 2.1), and IQgee 20, 49, 128, 164, 171]

e Even a slight motion of the EEG electrodes within the stramagjcsfield of the magnet can induce
significant EMF [68, 94]. For instance, native pulsatile iootrelated to a heart beat yields a
ballistocardiographic artifact in the EEG that can be rdytire same magnitude as the EEG signals
themselves [55, 77]. Usually such artifacts are removedbysame average waveform subtraction

method, where the waveform is an averaged response to eacthdwe.

e Induced electric currents can heat up the electrode leagaitdul or even potentially dangerous
levels, such as to the point of burning the subject [107]. €hirlimiting electric components
(resistors, JFET transistorsic) are usually necessary to prevent the development of nesan
currents which can have direct contact with subject’s scalmulations show the safe power range

that should be used for some coil/power/sensors configur&ii comply with FDA guidelines [6].

Another concern is the impact of EEG electrodes on the quafiMR images. The introduction of
EEG equipment into the scanner can potentially disturb tmedgeneity of the magnetic field and distort
the resulting MR images [77, 105]. Recent investigationsastimt such artifacts can be effectively
avoided [89] by using specially designed EEG equipment:[SBEcialized geometries, and new “MR-
safe” materials (carbon fiber, plastic) for the leads. Tottasinfluence of a given EEG system on fMRI
data, a comparison of the data collected both with and witktoei EEG system being present, should
be conducted. Analysis of such data usually demonstragesdaime activation patterns in two conditions
[105], although a general decrease in fMRI SNR is observechvi#teG is present in the magnet. A
correction to the brain matter conductivities (which aredifor forwardEEMEG modeling) for the Hall

effect finds the following first-order correction to be ngghie: o; = 4.1 x 10780 for B = 1.5 T [21].

2.2 Experimental Design Limitations
There are two ways of avoiding the difficulties associatethwollecting EEG data in the magnet: (1)
collect EEG and MRI data separately, or (2) use an experirhpatadigm that can work around the

potential contamination between the two modalities. Thasilen between these two alternatives will
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Figure 2.1 EEG MR artifact removal using PCA. EEG taken inside the madtogt); EEG after
PCA-based artifact removal but with ballistocardiogragritacts present (center); EEG with all artifacts
removed (bottom). After artifact removal it can be seen thatsubject closed his eyes at time 75.9s.
(Courtesy of M. Negishi and colleagues, Yale University Sttod Medicine.)
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depend on the constraints associated with research gahleethodology. For example, if an experiment
can be repeated more than once with a high degree of refjabflihe data, separatdMEG and fMRI
acquisition may be appropriate [73, 74, 120, 158]. In cade=vgimultaneous measurements are essential
for the experimental objective (e.g., cognitive experitsemnhere a subject’s state might influence the
results as in monitoring of spontaneous activity or sleafesthanges), one of the following protocols can

be chosen:

Triggered fMRI: detected EEG activity of interest (epileptic discharg,) triggers MRI acquisition
[90, 104, 161, 191]. Due to the slowness of the HR, relevanhgés in the BOLD signal can be
registered 4-8s after the event. The EEG signal can setib&lgwafter the end of the previous
MRI block [55], so it is acquired without artifacts caused by pHses or gradient fields that are
present only during the MRI acquisition block. Note that isédicardiographic and motion-caused
artifacts still can be present and will require post-prgaegin order to be eliminated. Although this
is an elegant solution and has been used with some succésslotalization of epileptic seizures,
this protocol does have drawbacks. Specifically, it impadéasitation on the amount of subsequent
EEG activity that can be monitored if the EEG high-pass 8ltéy not settle down soon after the MR
sequence is terminated [75]. In this case, EEG hardware&ltes not have a long relaxation period
must be used. Another drawback with this approach is thagitires online EEG signal monitoring
to trigger the fMRI acquisition in case of spontaneous agtivOften experiments of this kind are
calledEEG-correlated fMRUue to the fact that offline fMRI data time analysis implicitiges EEG

triggers as the event onsets [155];

Interleaved EEG/fMRI: the experiment protocol consists of time blocks and onlynglsi modality is
acquired during each time-block [21, 112]. This means thatyestimulus has to be presented at
least once per modality. To analyze ERP and fMRI activatioms,ttiggered fMRI protocol can
be used with every stimulus presentation so that EEG and MReqguentially acquired in order to

capture a clealhMEG signal followed by the delayed HR [170];

Simultaneous fMRI/EEG: pre-processing of the EEG signal mentioned in Section 21%esl to remove
the MR-caused artifacts and to obtain an estimate of the tE@® Eignal. However, neither of
the existing artifact removing methods is proved to be ganenough to work for every type

of EEG experiment and analysis. It is especially difficultuse such an acquisition scheme for
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cognitive experiments in which the EEG evoked responsesefast can be of small amplitude and

completely overwhelmed by the MR noise [157].



CHAPTER 3

CONVENTIONAL MULTIMODAL ANALYSIS

The average Ph.D. thesis is nothing but the transference of

bones from one graveyard to another.

— Frank J. DobiéA Texan in England’; 1945

There is an increasing number of reportesl EG/fMRI conjoint studies, which attempt to gain
the advantages of a multimodal analysis for experimentsiving perceptual and cognitive processes:
visual perception [105, 166, 170, 183] and motor activafitdb], somatosensory mapping [87, 158],
fMRI correlates of EEG rhythms [35, 56, 101, 112, 123], arbasa attention interaction [44], auditory
oddball tasks [23, 74], passive frequency oddball [10fi]sadry figures in visual oddball tasks [93], target
detection [120, 126], face perception [73], sleep [75]glaage tasks [166, 185], and epilepsy [90-92,
100, 108, 161, 189, 191].

This section starts with an explanation of the role of anatairMRI in multimodal experiments
followed by a description of multimodal analysis methodedigh the above mentioned studies or test-

driven on the simulated data.

3.1 Using Anatomical MRI

The difference in captured MRI contrasts (proton densifd3)(or T1, T2 relaxation times) for different
types of organic tissue makes possible the non-invasiMeatmn of information about the structural
organization of the brain. In addition, a regular gradiergmn echo EPI sequence is capable of detecting
transient or subtle changes of the magnetic field in cortisalie caused by neuronal activation [19, 196].
However, direct application of MRI to capture functionaliaity remains limited due to a low signal-to-
noise ratio (SNR) which is why MRI is often labell@shatomical The next section briefly describes the
analysis of acquired high-resolution 3D images of the basid how obtained structural information can

be used to analyze data collected from other modalitiesoffoer reviews see [51, 52, 135, 154]).

3.1.1 Registration of EEG and MEG to MRI
If an EEG experiment is performed inside the magnet, it isdes to “mark” [95] the location of the EEG

sensors to make them distinguishable on the a%ftomical MRirdiwtes for these locations can then be
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found either manually or automatically [165] and will lie MRI coordinate system. In case when MR
andEIMEG data are acquired in separate sessions, spatial réigistobatweerffMEG and MRI coordinate
systems must be performed before any anatomical informa@m be introduced into the analysis of
EIMEG data. There are two general possible ways for perforneggtration between MRl andMEG
data: (a) registering a limited set of fiducial points or (by@ing scalp surfaces obtained during MRI
with a digitization of the scalp duringMEG. Methods based on the alignment of the scalp surfaces (or
points clouds) considered to perform better than thosegd&incial-points [76, 88, 97, 159], but are more
computationally demanding and rely on iterative optimaat In addition, it can be time consuming to
obtain the dense digitization of the subject’s head using@les point 3D digitizer. For these reasons
the fiducial points approach remains the prefeletEG/MRI registration method [for instance 95, 176].
The fiducial points method involves the alignment of a limiset of points, which have a strict known
correspondence between the two spaces, so that each figoiciain EMEG space with coordinates)
has a corresponding known poingX{) in MRI space. Such coupling removes the possibility of being
trapped in the local minima of the iterative surface alignmethods and makes registration simple and
fast. The precision of the derived transformation can beegmwed by adding more pairs of corresponding
EMEG and MRI points. A more detailed description of the regtgirmamethod using fiducial points
follows.

Locations of the fiducial pointe(g.anatomical points: nasion, inion, pre-auricular pointtragus
of the left and right earlobes, vertex; MRI-visible capsuegven bite-bar points [1, 167]) are captured
together with the locations &MEG sensors using a 3D digitizer and then matched to the twtabf
corresponding fiducial points obtained from the analysishef MRI for the same subject. A 3D rigid
transformation of the points from tH@VEG (x”) to the MRI coordinate systenx{—"!) can be defined

by the rotation matriXR and translation vector, so thatx?~" = Rx” + v. Commonly, the quadratic
P

mis-registration error measure is the subject to mininozrat(R,v) = Z(xf” — xF7M)2 where P

is the number of the points. Solutions can be found with giiegl geomietrical formulations [193], or
iterative search optimization using Powell’'s algorithn6T]. Such simplifications or complications are
not necessary because the analytical form solutions haye dberived in other fields [71, 72], and they
are often used in the surface matching methods earlier s8ecl For instance, quaternions (vectors in
L4) can be natively used to describe a rotation in 3D spacengadi a straightforward solution of the

registration problem [71] (see Appendix C). This method e to implement. Its precision rapidly



26

increases with the number of fiducial points, reaching thdop@ance of surface matching algorithms

cheaply and efficiently.

3.1.2 Segmentation and Tessellation

PD or T1/T2 3D MR images can be used to segment different lissoes (white matter, gray matter,
cerebrospinal fluid (CSF), skull, scalp) as well as abnoramahétions (tumors) [38, 131]. Different kinds
of MR contrasts are optimal for the segmentation of the diffié kinds of head and brain structures. For
instance, PD-weighted MRI yields superior segmentatiorhefibner and outer skull surfaces because
bones have much smaller water content than brain tissuenm#te skull easily distinguishable on PD
images. On the other hand, exploiting T1 and T2 relaxatiore tdifferences between various sorts of
brain tissue leads to higher quality segmentation of stirestwithin the brain.

Using triangulation (tessellation) and interpolatiorsipossible to create fine-grained smooth mesh
representations or tetrahedral assemblies of the segditsdees [36, 146, 163]. Obtained 3D mesh of the
cortical surface alone brings valuable information to thelgsis ofEMEG signals [28]: the physiology
of the neuronal generators can be considered, allowingmhmeit the search space for activated sources
to the gray matter regions and oriented orthogonally orlpearto the cortical surface [38, 134].

Monte Carlo studies [110] tested the influence of the ori@matonstraint in the case of the DECD
model and showed that such constraint leads to much bettditmming of the inverse problem while still
being robust to the error of the assumed cortical surfacelaia deviation of the orientation B0° range
leads to just a slight increase of distortion, thus not sigamtly affecting the accuracy of the localization
procedure. Anatomical constraints improve the localaraéind contrast of beamforming imaging methods
as well, but the use of anatomical constraints found to bamtdgeous only in case of good MEMEG

coregistration [69].

3.1.3 Forward Modeling of EEG and MEG

Volumetric structures derived from the tessellation pdure are used to create a realistic geometry of the
head, which is crucial for the forward modelingEfIEG fields. Previously, rough approximations based
on best-fit single/multiple sphere models were developedveycome the burden of creating realistic
head geometry, but they became less favorable as the iedreasilability of powerful computational

resources made more realistic modeling possible. Spafiaimation is especially important for EEG
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forward modeling due to the fact that it is more strongly etiéel by the conductivities of the skull and the
scalp than the MEG forward model. Such inhomogeneities daffect the magnetic field at all in case of
a spherical head model, when only the inner skull surfacétlssomain concern for the forward modeling.
There are four numerical methods available to solvéti&G modeling problem, and the Boundary
Elements Method (BEM) [65] is the most commonly used wherragyt (direction independence) of the
matters is assumed, so that only boundary meshes obtairted gssellation process are required. It was
shown, however, that anisotropy of the skull [115] and wiitgtter [195] can bias EEG and MEG forward
models. To solve the forward problem in the case of an amipmmedium, the head volume is presented
by a large assembly of small homogeneous tetrahedrons, kimite Elements Method (FEM) [122] is
used to approximate the solution. Another possible way iss®the Finite Difference Method (FDM)
on a regular computational mesh [153]. Table A lists somdigyhavailable software which can help
performing the forwardMEG modeling. Forward modeling 8]MEG signal rely on the knowledge of
matter conductivities. Common values of conductivitiesdiffierent tissues can be found in the literature
[50], or can be estimated on a per-subject basis using kactmpedance Tomography (EIT) [58] or

Diffusion Tensor (DT) [179] MRI.

3.2 Forward Modeling of BOLD Signal
The successful analysis of the results of a multimodal expat remains problematic. The main problem
of multimodal analysis is the absence of a general unifycgpant of the BOLD fMRI signal in terms of
the characteristics of a neuronal response. Various mbdeksbeen suggested, on one hand they include
naive modeling of BOLD signal in the context of a Linear Time@dnant System (LTIS). On the other
hand there are general models of the BOLD signal in terms ailddtbiophysical processeB4lloon[26]
or Vein and Capillary{162] models). The naive models are not general enough taiexjpe variability of
the BOLD signal, whereas complex parametric models thatedyily on a prior knowledge of nuisance
parameters (due to biophysical details), almost never dbae a reliable and straightforward means of
estimation. This fact makes it unlikely to use such compnelve models as reliable generative models of
the BOLD signal. Research continues in attempts to derivelisov@able models to support data obtained
in different modalities based on originating them neuraigihal. Interestindpeuristic modebf neuronal
activation and its influence on BOLD and EEG signals was régceniggested by Kilner, et al. [85].

Suggested model relates BOLD signal to the changes in spektiacteristics of the EEG signal during
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activation. Proposed model formulation agrees well with tlsults of many multimodal experiments
which used other methods of multimodal analysis. Thus tlmdehsounds promising and it might reveal
reliable interdependencies between different brain imagnodalities. The following section describes
modeling issues in greater detail to further underline itihé@éd applicability of many multimodal analysis

methods covered in Section 3.3.

3.2.1 Convolutional Model of BOLD Signal
Various experimenters had originally focused on simpletremt designs such as block design paradigms
in order to exploit the presumed linearity between theiigleparameters and the HR. This assumption
depends critically on the ability of the block design to aifygthe SNR and the implicit belief that the HR
possess more temporal resolution than indicated by the TR.

In order to account for the present autocorrelation of the ddBsed by its temporal dispersive
nature, Friston et al. [47] suggested to model HR with a LT&Sdescribe the output of such a system, a
convolution of an input (joint intrinsic and evoked neurbaetivity ¢(¢)) with a hemodynamic response

function (HRF)A(t) is used to model the HR

ft) = (hxq)(t). (3.1)

Localized neuronal activity itself is not readily availabVia means of non-invasive imaging,
therefore it is more appropriate to verify LTIS modeling @alrdata as a function of parameters of the
presented stimuliife. duration, contrast).

The convolutional model was used on real data to demonéimateity between the BOLD response
and the parameters of presented stimuli [22, 33]. In factymexperimenters have shown apparent
agreement between LTIS modeling and real data. Specifidiyast been possible to model responses
to longer stimuli durations by constructing them using tbgponses to shorter duration stimuli, which is
consistent with LTIS modeling. Because of the predictivecess, its relative simplicity of application and
resulting ignorance of biophysical details this modelipg@ach became widely accepted. Unfortunately
LTIS as a modeling constraint is very weak therefore allgnam arbitrary choice of parametric HRF
based only on preference and familiarity.

Over the years multiple models for the HRF have been sugge3teel most popular and widely

used up until now is a single probability density functiod@ of Gamma distribution by [99]. It was
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elaborated by Glover [54] to perform the deconvolution af HiR signal, and the nuisance parameters

(n1, 11, na, 12, as) Of the next HRF were estimated for motor and auditory areas

1 a e\
h(t) = —t™ et/ 22 yn2 ot/t2 where ¢; = maxt"i et/ = ( ) (3.2)
¢ Co t nltz

which can be described as the sum of two unscaled PDFs of Galistndution. The first term captures
the positive BOLD HR and the second term is to capture the beetoften observed in the BOLD signal.
Many other simple and as well as more sophisticated modétRéf were suggested: Poisson PDF [47],
Gaussians [148], Bayesian derivations [29, 53, 116] and'®tfAde particular choice of any of them was
primarily dictated by some other than bio-physics motmatieasy Fourier transformation, presence of
post-response dip or “best-fit” properties.

Since the suggestion of the convolutional model descriB@g.D response, different aspects of HR
linearity became an actively debated question. If HR isdiméhen what features of the stimulusd.
duration, intensity) or neuronal activatiog.g.firing frequency, field potentials, frequency power) does it
vary linearly with? As the first approximation, it is imponto define the ranges of the above mentioned
parameters in which HR was found to behave linearly. For g@anearly linearity tests [54] showed
the difficulty in predicting long duration stimuli based om @stimated HR from shorter duration stimuli.
[169] reviewed existing papers describing different agpe€t non-linearity in BOLD HR and attempted
to determine the ranges of linearity in respect to stimutation in three cortical areas: motor, visual and
auditory complex. The results of these analyses have shuoatratthough there is a strong non-linearity
observed on small stimuli durations, long stimuli durasiehow higher degree of linearity.

It appears that a simple convolutional model generally is gapable of describing the BOLD
responses in terms of the experimental design parametsushfare varying in a wide range during the
experiment. Nevertheless LTIS might be more appropriateddel BOLD response in terms of neuronal
activation if most of the non-linearity in the experimendalsign can be explained by the non-linearity of

the neuronal activation itself.

3.2.2 Neurophysiologic Constraints
In the previous section the subject of linearity between @ékperimental design parameters and the
observed BOLD signal was explored. For the purpose of thisweit may be more interesting to explore

the relation between neuronal activity and HR.
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It is known thatE]MEG signals are produced by large-scale synchronous ndwcnaty, whereas
the nature of the BOLD signal is not clearly understood. The BQGiignal does not correspond to
the neural activity that consumes the most energy [8], aly easearchers believed. Furthermore, the
transformation between the electrophysiological indicatof neuronal activity and the BOLD signal
cannot be linear for the entire dynamic range, under all exygntal conditions and across all the brain
areas. Generally, a transformation function cannot balfisgnce the BOLD signal is driven by a number
of “nuisance” physiologic processes such as cerebral mktaixygen consumption (CMR{, cerebral
blood flow (CBF) and cerebral blood volume (CBV) as suggested &B#lloon mode[26], which are
not generally linear.

Due to the indirect nature of the BOLD signal as a tool to measwwuronal activity, in many
multimodal experiments a preliminary comparative studglase first in order to assess the localization
disagreement across different modalities. Spatial digpreent is often found to be very consistent across
multiple runs or experiments (see Section 3.3.3 for an el@m@pecifically, observed differences can
potentially be caused by the variability in the cell typed aeuronal activities producing each particular
signal of interest Nunez and Silberstein [135]. That is wiig important first to discover the types of
neuronal activations that are primary sources of the BOLDaigSome progress on this issue has been
made. A series of papers generated by a project to cast ligtfteorelationship between the BOLD signal
and neurophysiology, have argued that local field potentidtP) serve a primary role in predicting BOLD
signal [111, and references 27, 29, 54, 55 and 81 therein Work countered the common belief that
spiking activity was the source of the BOLD signal [for exaep] by demonstrating a closer relation of
the observed visually evoked HR to the local field potentiaFsP) of neurons than to the spiking activity.
This result places most of the reported non-linearity betwexperimental design and observed HR into
the non-linearity of the neural response, which would béaafiultimodal analysis.

Note that the extracellular recordings experiments dieedrabove, were carried out over a small
ROIs, therefore they inherit the parameters of underlyiegnddynamic processes for the given limited
area. Thus, even if LFP is taken as the primary electroplygimal indicator of the neuronal activity
causing BOLD signal, the relationship between the neuroctality and the hemodynamic processes on
a larger scale remains an open question.

Since near-infrared optical imaging (NIOI) is capable gbtcaing the individual characteristics of

cerebral hemodynamics such as total, oxy-, and deoxy-heiiogcontent, some researchers tried to use
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NIOI to reveal the nature of the BOLD signal. Rat studies usibgaptical imaging [41] showed the
non-linear mapping between the neuronal activity and evdlenodynamic processes. This result should
be ared flag for those who try to define the general relatiowdset neuronal activation and BOLD signal
as mostly linear. The conjoint analysis of BOLD and NIOI sigrravealed the silent BOLD signal during
present neural activation registereddiy EG modalities [162]. This mismatch betwelgh EG and fMRI
results is known as theensory motor paradoil4l]. To explain this effect, th&ein and Capillary
model was used to describe the BOLD signal in terms of hemadimparameters [162]. The suggested
model permits the existence of silent and negative BOLD nesp® during positive neuronal activation.
This fact, together with an increasing number of studie2]onfirming that sustained negative BOLD
HR is a primary indicator of decreased neuronal activagooyide yet more evidence that the BOLD HR
generally is not a simple linear function of neuronal a¢to@but at best is a monotone function which has
close to linear behavior in a wide range of nuisance neursiplogic parameters. This section concludes
by noting that the absence of a generative model of the BOLPorese prevents the development of
universal methods of multimodal analysis. Neverthelessliscussed in this section and is shown by the
results presented in the next section, there are specifiesanf applications where the linearity between
BOLD and neuronal activation can be assumed. Such simphigiael can be voted for by the supported

of Occam’s razowprinciple which is to prefer simple models capable of ddsig the data of interest.

3.3 Analysis Methods

Whenever applicable, a simple comparative analysis of thelteeobtained from the conventional uni-
modal analyses together with findings reported elsewhene,be considered as the first confirmatory
level of a multimodal analysis. This type of analysis is véexible, as long as the researcher knows
how to interpret the results and to draw useful conclusiespecially whenever the results of comparison
reveal commonalities and differences between the two [188] the other hand, by default a unimodal
analysis makes limited use of the data from the modalitied emcourages researchers to look for analysis
methods which would incorporate the advantages of eackesimgdality. Nevertheless, simple inspection
is helpful for drawing preliminary conclusions on the pléigy to perform any conjoint analysis using
one of the methods described in this section, includingetative analysis which might be considered an

initial approach to try.
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3.3.1 Correlative Analysis of EEG and MEG with fMRI

In some experiments, tHEMEG signal can serve as the detector of spontaneous neurtivatyae.g.
epileptic discharges) or changes in the processing staigsigilance states). The time onsets derived
from EMEG are alone valuable for further fMRI analysis, where the BGdiflhal often cannot provide
such timing information. For instance, such use of EEG datahiaracteristic for the experiments
performed via &riggered fMRIlacquisition scheme (Section 2.2).

CorrelativeEEMEG/fMRI analysis becomes more intriguing if there is a stearfgelief in the linear
dependency between the BOLD response and feature&G signal €.g.amplitudes of ERP peaks,
powers of frequency components), than between the hemoudgsaf the brain and the corresponding
parameter of the desige.g.frequency of stimulus presentation or level of stimulusrddgtion). Then
EMEG/fMRI analysis effectively reduces the inherent bias @nésn the conventional fMRI analysis
methods by removing the possible non-linearity betweerddesgn parameter and the evoked neuronal
response.

The correlative analysis relies on the preprocessirngMEG data to extract the features of interest
to be compared with the fMRI time course. The obtait®dEG features first get convolved with a
hypothetical HRF (Section 3.2.1) to accommodate for the HiRshess and are then subsampled to fit
the temporal resolution of fMRI. The analysis of fMRI signatm@ation with amplitudes of selected peaks
of ERPs revealed sets of voxels which have a close to lineandimcy between the BOLD response and
amplitude of the selected ERP peak (N170 in [73], P300 in [#@4}§ amplitude of mismatch negativity
(MMN) [109]), thus providing a strong correlatio®(< 0.001 [73]). A parametric experimental design
with different noise levels introduced for the stimulus detation [73, 109] or different levels of sound
frequency deviant [109] helped to extend the range of deddleRP and fMRI activations, thus effectively
increasing the significance of the results found. To suppersuggested connection between the specific
ERP peak and fMRI activated area, the correlation of the sameB§)dnal with the other ERP peaks
must be lower if any at all [73]. As a consequence, such aisatgsnot prove that any specific peak of
EEG is produced by the neurons located in the fMRI detecteasai®ne but it definitely shows that they
are connected in the specific paradigm.

The search for the covariates between the BOLD signal and-spdsad neuronal signals, such
as the alpha rhythm, remains a more difficult problem due ¢oatmbiguity of the underlying process,

since there are many possible generators of alpha rhythmesponding to various functions [130].
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As an example, Goldman et al. [56] and Laufs et al. [101] werkihg for the dependency between
fMRI signal and EEG alpha rhythm power during interleaved amdultaneous EEG/fMRI acquisition

correspondingly. They report similar (negative correlatin parietal and frontal cortical activity), as
well as contradictory (positive correlation) findings, wimican be explained by the variations in the
experimental setup [102] or by the heterogeneous coupletyden the alpha rhythm and the BOLD
response [101]. Despite the obvious simplification of thealative methods, they may still have a role to

play in constraining and revealing the definitive forwarddalan multimodal applications.

3.3.2 Decomposition Techniques

The common drawback of the presented correlative analgsdmsnigues is that they are based on the
selection of the specific feature of ttAMEG signal to be correlated with the fMRI time trends, which
are not so perfectly conditioned to be characterized pilynhy the feature of interest. The variance of
the background processes, which are present in the fMRI ddtara possibly explained by the discarded
information from theEIMEG data, can reduce the significance of the found correlafidrat is why it
was suggested [117] to use the entirety of BMEG signal, without focusing on its specific frequency
band, to derive th&/MEG and fMRI signal components which have the strongest @immelamong them.
The introduction of decomposition techniques (such ashasisuit, PCA, ICAgtc) into the multimodal
analysis makes this work particularly interesting.

To perform the decomposition [117], Partial Least-SquéiRtsS) regression was generalized into
the tri-PLS2 model, which represents @ EG spectrum as a linear composition of trilinear components
Each component is the product of spatial (am&MEG sensors), spectral and temporal factors, where
the temporal factors have to be maximally correlated with ¢brresponding temporal component of
the similar fMRI signal decomposition into bilinear compate products of the spatial and temporal
factors. Analysis using tri-PLS2 modeling on the data fr&@] found a decomposition into 3 components
corresponding to alpha, theta and gamma bands of the EE@I sifhe fMRI components found had a
strong correlation only in alpha band component (Pearsoreletion0.83 (p = 0.005)), although the
theta component also showed a linear correlatidnf (p = 0.070). Itis interesting to note, that spectral
profiles of the trilinear EEG atoms received with and withiddiR| influence were almost identical, which

can be explained either by the non-influential role of fMRIFRLS2 decomposition of EEG, or just by a
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good agreement between the two. On the other hand, EEG dgfigiided fMRI decomposition, so that

the alpha rhythm spatial f/MRI component agreed very well whthprevious findings [56].

3.3.3 Equivalent Current Dipole Models

ECD is the most elaborated and widely used technique for edoralization in EMSI. It can easily
account for activation areas obtained from the fMRI analisiss giving the necessary fine time-space
resolution by minimizing the search space of non-lineamaigation to the thresholded fMRI activation
map. While being very attractive, such a method bears mokegiroblems of the ECD method mentioned
in Section 1.3, and introduces another possible bias dubetdelief in the strong coupling between
hemodynamic and electrophysiological activities. Fos tigason it needs to be approached with caution
in order to carefully select the fMRI regions to be used in tldEOEMRI combined analysis.

Although good correspondence between ECD and fMRI resultftes dound [3], some studies
reported a significant (1-5cm) displacement between loeatobtained from fMRI analysis and ECD
modeling [15, 59, 87, 108]. Itis interesting to note, thatlsdisplacement can be very consistent across
the experiments of different researchers using the sanmedigan (for instance motor activations [86,
87, 158]). As it was already mentioned, in the first step, gogntomparison of detected activations
across the two modalities can be done to increase the H@adii dipole localization alone. Further,
additional weighting by the distance from the ECD to the somding fMRI activation foci can guide
ECD optimization [188] and silent in fMRI activations can beammodated by introducing free dipoles
without the constraint on dipole location.

Auxiliary fMRI results can help to resolve the ambiguity oetmverseEMEG problem if ECD
lies in the neighborhood of multiple fMRI activations. Plagimultiple ECDs inside the fMRI foci
with successive optimization of ECDs orientations and magleis may produce more meaningful results,
especially if it better describes tl#MEG signal by the suggested multiple ECDs model.

Due the large number of consistent published fMRI resulteédims viable to perform a pusBEG
experiment with consequent ECD analysis using known retd&RI activation areas found by the other
researchers performing the same kind of experiment [46§ finoviding the missing temporal explanation

to the known fMRI activations.
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3.3.4 Linear Inverse Methods

Dale and Sereno [38] formulated a simple but powerful lifemmework for the integration of different
imaging modalities into the inverse solution of DECD, whére $olution was presented as unregularized
(just minimum-norm) (1.8) wittiWq = Cg andAWx = C.. The simplest way to account for fMRI
data is to use thresholded fMRI activation map as the invaskgien space but this was rejected [51]
due to its incapability to account for fMRI silent sources,iethis why the idea to incorporate variance
information from fMRI intoC was further elaborated [110] by the introduction of relativeighting for
fMRI activated voxels via constructing a diagonal maWi&g = Wi = {v;;}, wherer;; = 1 for fMRI
activated voxels and;; = v, € [0, 1] for voxels which are not revealed by fMRI analysis. A Monte Garl
simulation showed that, = 0.1 (which corresponds to tH#% relative fMRI weighting) leads to a good
compromise with the ability to find activation in the areasahrare not found active by fMRI analysis and
to detect active fMRI spots (even superficial) in the DECD iseesolution. An alternative formulation
of the relative fMRI weighting in the DECD solution can be givesing a subspace regularization (SSR)
technique [2], in which afrfMEG source estimate is chosen from all possible solutionsritésg the
EIMEG signal, and is such that it minimizes the distance to agadesdefined by the fMRI data (Fig. 3.1).
Such formulation helps to understand the mechanism of fMfRience on the inverseMEG solution:
SSR biases underdetermined EAdEG source locations toward the fMRI foci.

The relative fMRI weighting was tested [37] in an MEG expenih@nd found conjoint fIMRI/MEG
analysis results similar to the results reported in previddRI, PET, MEG and intracranial EEG studies.
Babiloni et al. [9] followed Dale et al. [37] in a high resoloi EEG and fMRI study to incorporate
non-thresholded fMRI activation maps with other factorsrstof all, the Wsyr, was reformulated to
(Wimrir)ii = vo + (1 — 1) A;/Amax, Where A; corresponds to the relative change of the fMRI signal
in the i-th voxel, andAn,. is the maximal detected change. This way the reldtiMEEG/fMRI scheme
is preserved and locations of stronger fMRI activations hagher prior variance. Finally the three
available weighting factors were combined: fMRI relativeigieing, correlation structure obtained from
fMRI described by the matrix of correlation coefficiedfs;, and the gain normalization weighting matrix
W, (Section 1.3.2)Wq = W2 WY K WL2WL2 - Although Wiyg,, alone had improved EMSI
localization, the incorporation of thK 5 lead to finer localization of neuronal activation associatéth

finger movement.
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MEG only With fMRI
A MEG Source Space C Subspace Defined by fMRI
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Figure 3.1 Geometrical interpretation of subspace regularizatiothenMEG/EEG source space. (A)
The cerebral cortex is divided into source elemefitsqs, . . ., qx, €ach representing an ECD with a
fixed orientation. All source distributions compose a veeton K -dimensional space. (B) The source
distributionq is divided into two componentg® € S = range(G "), determined by the sensitivity of
MEG sensors and” € null G, which does not produce an MEG signal. (C) The fMRI activatidefine
another subspacg™R'. (D) The subspace-regularized fMRI-guided solutdiR € M is closest toS™R!,
minimizing the distancdPq>SR|, whereP (a N x N diagonal matrix withP;; = 1/0 when thei-th fMRI
voxel is active/inactive) is the projection matrix into thehogonal complement ¢gfR! . (Adapted from

[2, Figure 1])
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Although most of the previously discussed DECD methods ahiad in finding minimalL, norm
solution, the fMRI conditioned solution with minimal norm (regularization termin (1.8 Q) = ||Q||1)
is shown to provide a sparser activation map [48] with atstifocalized to the seeded hotspot locations
[188].

An fMRI-conditioned linear inverse is an appealing methocke do its simplicity, and rich
background of DECD linear inverse methods derived for théyaisaof EMEG signals. Nonetheless, one
should approach these methods with extreme caution in aidom@ere non-linear coupling between

BOLD and neural activity is likely to overwhelm any linear appimation [59].

3.3.5 Beamforming

Lahaye et al. [96] suggest an iterative algorithm for camj@inalysis of EEG and fMRI data acquired
simultaneously during an event-related experiment. Tineithod relies on iterated source localization by
the LCMV beamformer (1.10), which makes use of both EEG and fégR&. The covarianc€ y used

by the beamformer is calculated anew each time step, usengrdviously estimated sources and current
event responses from both modalities. This way neurores gitth a good agreement between the BOLD
response and EEG beamformer reconstructed source anepliiadefit most at each iteration. Although
the original formulation is cumbersome, this method apppasmising as (a) it makes use of both spatial
and temporal information available from both modalitiasg &b) it can account for silent BOLD sources
using an electro-metabolic coupling constant which iswestied for each dipole and defines the influence
of the BOLD signal at a given location onto the estimatior(gf which, in turn, drives the estimate of

Cx.

3.3.6 Bayesian Inference
During the last decade, Bayesian methods became domindr& prababilistic signal analysis. The idea
behind them is to use Bayes’ rule to derivpa@sterior probabilityof a givenhypothesisaving observed

dataD, which serves asvidencedo support the hypothesis

p(DIH) p(H)

p(H|D) = o)

(3.3)

wherep(H) andp(D) are prior probabilities of the hypothesis and evidenceespondingly, and the

conditional probabilityp(D|H) is known as dikelihood function Thus, (3.3) can be viewed as a method
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to combine the results of conventional likelihood analyBesmultiple hypotheses into the posterior
probability of the hypotheseg™|D) or some function of it, after been exposed to the data. Thigeter
posterior probability can be used to select the most prebhppothesisj.e. the one with the highest
probability

Hyp = arg max p(H|D) = arg maxlog p(D|H) + log p(H) (3.4)

leading to the maximura posteriori(MAP) estimate, where the prior data probabilify>) (often called
a partition function is omitted because the data does not depend on the choibe biypothesis and it
does not influence the maximization ovér

For the class of problems related to the signal processyppthesisH generally consists of a model
M characterized by a set of nuisance parame®ers {6,,0,_,}. The primary goal usually is to find a
MAP estimate of some quantity of intereAt or, more generally, its posterior probability distriburtio
p(A|D, M, ®). A can be an arbitrary function of the hypothesis or its compt®A = f(H), or often
just a specific nuisance parameter of the maet 6,. To obtain posterior probability of the nuisance
parameter, its marginal probability has to be computed byirttegration over the rest of the parameters

of the model

(6D, M) = / p(6r, 61D, M) dby._, — / p(0:16s.., D, M) p(Bs. D, M) by .. (3.5)

Due to the integration operation involved in determinatibany marginal probability, Bayesian analysis
becomes very computationally intensive if analytical gnéé solution does not exist. Therefore, sampling
techniqgues€.9g.MCMC, Gibbs sampler) are often used to estimate full postgriobability p(A|D, M),
MAP A‘D,M = arg maxa p(A|D, M), or some statistics such as an expected valua|D, M| of the
guantity of interest.

The Bayesian approach sounds very appealing for the develupof multimodal methods. 1t is
inherently able to incorporate all available evidence,clhis in our case obtained from the fMRI and
EMEG data D = {X,F}) to support the hypothesis on the location of neuronal atitms, which
is in the case of DECD model i&t = {Q, M}. However, the detailed analysis of (3.3) leads to
necessary simplifications and assumptions of the priorgiitibes in order to derive a computationally
tractable formulation. Therefore it often loses its gehigral hus to derive a MAP estimator f(i,AI2|X,B7M

Trujillo-Barreto et al. [178] had to condition the computettby a set of simplifying modeling assumptions
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such as: noise is normally distributed, nuisance parameteforward models have inverse Gamma
prior distributions, and neuronal activation is descrilbgda linear function of hemodynamic response.
The results on simulated and experimental data from a s@@asory MEG/fMRI experiment confirmed
the applicability of Bayesian formalism to the multimodalaiging even under the set of simplifying
assumptions mentioned above.

Usually, modelM is not explicitly mentioned in Bayesian formulations (susl{®5)) because only
a single model is considered. For instance, Bayesian fotronlaf LORETAEMEG inverse corresponds
to a DECD model, wher® = Q is constrained to be smooth (in space), and to cover whotexsurface.
In the case of thBayesian Model Averagin@MA), the analysis is carried out for different mode\s;,
which might have different nuisance parameterg,EMEG and BOLD signals forward models, possible
spatial locations of the activations, constraints to reageeEMEG inverse solution. In BMA analysis we
combine results obtained using all considered models tgaterthe posterior distribution of the quantity
of interest

p(A[D) = Zp(Am,MZ-)p(MAD), (3.6)

where the posterior probability M;|D) of any given modelM; is computed via Bayes’ rule using prior

probabilitiesp(M;), p(D) and the likelihood of the data given each model

p(DIM,) = / p(D|©, M,) p(©]M,) dO. (3.7)

Initially, BMA was introduced into théMEG imaging [177], where Bayesian interpretation of
(1.8) was formulated to obtain(Q|X, F) for the case of Gaussian uncorrelated no¥éx( = C. =
v.X). In order to create a model, the brain volume gets pargtbimto a limited set of spatially distinct
functional compartments, which are arbitrarily combineddefine aM;, search space for thgMEG
inverse problem.

At the end, different models are sampled from the posterobability p(M;|X) to get the estimate

of the expected activity distribution of ECDs over all corseld source models

E[QX] = ZE QIX, M| p(M;|X)

Var|Q|X] = Z\/ar QIX, M;] p(M;|X),
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where the normalized probabilip(.M;|X), Bayes’ Factoi3;,, and prior oddsy;, are

a; By p(X’Mz) p(Mz)
PIMIX) = <" By = o 28
( | ) Z o Bro ’ p(X’MO)

In the original BMA framework foflMEG [177]«; = 1V, i.e.the models had a flat prior PDF because
no additional functional information was available at tpatnt. Melie-Garta et al. [119] suggested to
use the significance values of fMRI statistical t-maps tov#ari,M;) as the mean of all such significance
probabilities across the presentM; compartments. This strategy causes the models considtithg o
compartments with significantly activated voxels get higtréor probabilities in BMA. The introduction
of fMRI information as the prior to BMA analysis reduced the aguiity of the inverse solution, thus
leading to better localization performance. Although Hert analysis is necessary to define the
applicability range of the BMA irEMEG/fMRI fusion, it already looks promising because of the ake
fMRI information as an additional evidence factoriMEG localization rather than a hard constraint.
Due to the flexibility of Bayesian formalism, various Bayesmethods solvinggMEG inverse
problem already can be easily extended to partially accotateoevidence obtained from the analysis
of fMRI data. For instance, correlation among different areatained from fMRI data analysis can
be used as a prior in the Bayesian reconstruction of corcelsderces [152]. The development of a
neurophysiologic generative model of BOLD signal wouldallmany Bayesian inference methods (such

as [156]) to introduce complete temporal and spatial fMRbinfation into the analysis &IMEG data.



CHAPTER 4

MOTIVATIONS FOR FURTHER DEVELOPMENT OF MULTIMODAL METHODS

The only reason some people get lost in thought is because

it's unfamiliar territory

— Paul Fix

As shown above, fMRI BOLD signal is inherently non-linear asiaction of neuronal activation.
Nevertheless there have been multiple reports of lineagmidgncy between the observed BOLD response
and the selected set BIMEG signal features. In general, such results are not instamgiwith the non-
linearity of BOLD, since of course, often a non-linear funatican be well approximately linear in the
context of a specific experimental design, regions of iste dynamic ranges of the selected features of
EIMEG signals. Besides dominant LFP/BOLD linearity reported bgdthetis and also confirmed in the
specific frequency bands of EEG signal during flashing chibdead experiment [168], there have been
reports of a strong correlation between the BOLD signal annbéi and other features BMEG responses.

The exploration of techniques in addition to the ones preeskem the Section 3.3, and analysis of
the other components contributing BMEG signals might bring fruitful results in terms of the canjo
analysis. Next Section 4.1 discusses such possible noxettidins before Section 4.2 sketches the

motivation, goals and scope of this Ph.D. thesis.

4.1 Alternative Ways to Explore

In the past DCEIMEG signal component (Section 1.1) has not been of an attefdio multimodal
integration, despite recent experiments showing the gtroorrelation between the changes of the
observed DC-EEG signal and hemodynamic changes in the human [82]. In fact, such
DC-EMEG/BOLD coupling suggests that the integration of fMRI and BRBEG might be a particularly
useful way to study the nature of the time variations in HRhalg Such variations are usually observed
during fMRI experiments but are not explicitly explained b experimental design or by the physics of
MR acquisition process.

Having selected features of the signals which would be raain the fusion, many EMSI methods
can be naturally extended to account for fMRI data if a generdorward model of BOLD signal is

available. For instance, direct universal-approﬂnafweise methods [79, 80] have been found to be
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very effective (fast, robust to noise and to complex forwaraldels) for theMEG dipole localization
problem, and could be augmented to accept fMRI data if thergéime model for it was provided.

FMRI conditioned EMEG DECD methods have been shown to be relatively simple and
mathematically compelling for source imaging when thera good spatial agreement betwdddEG
and fMRI signals. Due to the advantages of these methods,ghtniie valuable to consider other
advanced6MEG DECD methods such as FOCUSS [60], which is known to bring argment of
estimation of focal sources over simple linear inverse wesH14].

ICA as a signal decomposition technique has been found efeict removing artifacts ilfMEG
without degrading neuronal signals [82, 84, 174, 184], roeeeit is known to be superior to PCA in the
component analysis ®8MEG signals [81]. Initial research using ICA of fMRI in the sgdtiomain [118]
was controversial, however consecutive experiments andrgization of ICA to fMRI in the temporal
domain (see [27] for an overview) has increased its norreatalue. The development of ICA methods
for the analysis of multimodal data provides a logical egien of the decomposition techniques covered
earlier.

The formulation of a general BOLD signal model capable of dbsw the desired non-linear
dependency in terms of neuronal activation and nuisancsiglogical parameters would constitute a
major step toward the development of the multimodal methwitls wider range of application than in
the current “linear” domain. Since most of the multimodalthoels presented before rely upon the linear
dependence between signals, it is also important to anadéygand and formalize the knowledge about
the “linear” case, which is the simplest modeling assunmptialid in many instances. Thus it deserves

closer attention especially if we follow the notion©tcam’s razoprinciple.

4.2 “The Challenge”
As many other attempts to process different brain imagindatites, this work aims to develop a viable
method for multimodal information integration. Such mettsthould make use of the available temporal
and spatial information from both functional brain imagmgdalities such as fMRI and EEG or MEG.
Being said, it is important to emphasize once again, that dltieet uncertainty in the amount of synergy
which is present betwed#V EG and fMRI signals, a general methodology applicable toralltimaging
studies cannot yet to be defined. Nevertheless in the casa® wie primary goal of the experiment is to

gain a better resolution in the analysis of neuronal actimatof the same origine(g.just motor, or just
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visual activations), assumption of linearity might be dafi the experimental design is non-parametric,
and activations are known to be reproducible and consisiattime. The assumption that fMRI and
EIMEG signals generally correspond to the same neuronal tyctken along with experimental design
restrictions, lets us consider simple generative models as the convolutional model (Section 3.2.1).

The search for aappropriatebrain imaging experiment converged to an interesting aatlexging
topic in the brain imaging: mapping of the primary motor earfM1) and the higher processing level areas
(e.0.PMA, SMA, SI),i.e. the investigation of the assignment of different body partdor actions to the
responsible locations on the cortex. This type of studie& wff more than a century ago with direct
cortical stimulation in animals and the known pioneers imhan studies were Penfield and Boldrey [142].
They made direct observations by stimulating the humamiwéh weak electrical shocks in conscious
patients who were undergoing surgery. Well-kndvemunculugFig. 4.1), a caricature of the human form
with body parts drawn in sizes that are proportional to thespmed extent of their representations, was
one of the outcomes of their study.

All studies aiming to create a mapping of motor cortex (ooatalled somatotogy could be
split into 2 major groups: active and passive. In active issidcortex regions are stimulated either
invasively through direct stimulation of the exposed cofiee. during neurosurgical procedures) or non-
invasively using such tools as TMS. Corresponding eliciteatammovements or subject’s description
of sensation allows to discover the mapping. Safer and mioadlenging methodology is to register
neuronal activation in primary motor (M1) and somato-seng&1) cortical areas using non-invasive
brain imaging techniques such BMEG and fMRI, when subject is either performing some motor task
(e.g.finger-tapping) or experiencing sensory or nerve stimoihatFor instance, MEG experiment allowed
to distinguish cubitus from clunis along the somato-sensortex (Fig. 4.1) when subjects experienced
stimulation of the corresponding body part [43]. Fisherlef48] suggested that such kind of study could
be used as a benchmark for different localization method®iridea supports the challenge present in
this task.

Although coarse mapping of body parts is well studied, fingppiag of fingers while performing
motor task is difficult to investigate with any non-invasiv@ain imaging technique [39, 70]. Consequently,
some ad-hoc experimental design, thoughtful experimaetalp, and advanced statistical processing [39]

are required to extract the spatial sequencing betweerdjheent fingers. Itis even more challenging [70]

1Somatotopie organized in a point-to-point representation of the surface of the body
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Figure 4.1 a ldentified sites of cortical activity, ané5% confidence ellipsoids, corresponding to
stimulation of the clunis and cubitus superimposed on aeprtative magnetic resonance image. The
two cortical sites are clearly distinct, with no overlap b&t95% confidence volumes. Furthermore, the
data are in good agreement with Penfield’s neurosurgicatbbéished homunculus. (Borrowed from [43])

b Detailed homunculus mapping.

to separate between finger taps sequential in time. Aftef #fle research investigations, fine somatotopy
of M1 remains a controversy. There is an emerging evidemer &nimal studies and fMRI human studies
in favor of distributed and overlapping cortical somatgtogpresentation [39]. Thus a methodology able
to resolve the ambiguity in this question, would be a promiraehievement in the field.

Before tackling the problem, it is helpful to highlight obum®problems with the existing studies:

e EIMEG studies investigating M1 somatotopy used single ECD ningléb get focal activation
locations. This kind of modeling is unrealistic and verydad if activation is not adequately
modeled by an ECD, which is often the case when there are reuligtivation sites as it was
suggested before. Preliminary localization studies ufiigl conditioned DECD modeling [9]
were able to improve DECD localization in such kinds of taskistbey did not aim to discover and

analyze the somatotopy;
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e observed overlaps in BOLD detected activation sites can melgidue to the spatial spread of
BOLD signal. Taking into account vessel structure or usingehprotocols such as fCBF [143]
might improve spatial resolution of fMRI studies, thus cat@alysis of the experimental settings

and protocols should be carried out before carrying out tAppimg experiment using fMRI;

e poor temporal resolution of BOLD signal does not allow anjatde sub-second temporal separation
of the motor events, thus reliable separation between séiqui time (sub-second interval) finger

taps cannot be achieved.

Bringing bothEMEG and fMRI modalities together is hoped to provide grater amaof spatio-
temporal information about motor activations. Althoughsitnecessary to use highly parameterized
models to describe motor activations registered with fMR7]Jl they are believed to be consistent and
reproducible in time. Consequently they satisfy our restms for multimodal analysis stated before.
The goal of this Ph.D. project becomés: propose multimodal analysis methods and validate them
on conjoint EEG/fMRI finger-tapping experiment .

The methods for conjoint analysis proposed in this disBertaely on simultaneous fitting of the
signals from both given modalities using the models of ole@signals at the high temporal and spatial
resolution. Such modeling of both signals which are produnetemporal (fMRI) and spatiaBMEG)
filtering of the neuronal activity, implicitly defines reguization for theEMEG inverse problem, thus
making it less ill-conditioned.

It is important first to validate the suggested methads verify their capabilities and compare to
the existing methods. Chapter 6 presents the results andacmops to the other methods when applied
to artificially generated data. While performing such sirtialss, it would be possible to investigate the
ranges of signals and noise characteristics in which stggesethods could be applied to provide reliable
results. In order to reach the goal stated above the futesestiwork will consist of the experimental design

and the analysis of acquired neuroimaging data.



CHAPTER 5

MULTIMODAL IMAGING USING L-NORMS SIGNAL RECONSTRUCTION

First, this chapter introduces a general formulation offtlteon problem. After that, the description of
proposed methods to derive the solution under differerblpro conditions follows: generic formulation
in terms of the minimization of the squared sum errbs fiorm), outliers insensitive formulation using
minimization of the absolute error sum;(norm), and the simplifications of the problem in case of fixed

source orientation.

5.1 Generalized Problem Formulation
5.1.1 Forward Models
According to DECD model of MEG signals (Section 1.3.2) and a simple convolutional model

(Section 3.2.1) for BOLD signal, we can summarize perfornwed/érd modeling as

Modality | Data Matrix ~Size ~ Model Q.
fMRI F NxU F=QB Q=1|q, |
EMEG X MxT X=GQ Q.

where Q(Q) (VT matrix) represents the strength of the dipoles without dagon information

Gt = \/qiit +q,. + ¢y ©(Q) BNXT matrix) contains pure orientation &, = g;,/Gx, Where
i = jmod N; B (T'xU matrix) is a circulant matrix which corresponds to the tenapféiltering of the
neuronal signal amplitude to reconstruct BOLD responsegusia convolutional model (Section 3.2.1);
and G (M x3N matrix) is a lead field matrix for NEM (Section 1.3.2). In thase of fixed known
orientations of the dipoles representing neuronal geoesat single projection of the strength to that

direction is used, thu€ = Q.

5.1.2 Objective Function
The objective of the presented multimodal analysis is tarede a temporally and spatially superior

modalityQ which is used to reconstruct ba¥andF using described forward models. The reconstruction

'Here and further we will us¢ € {1..3N} and corresponding € {1..N}, s.t. j € {i,i + N,i + 2N} for the
projections of thgth dipole on 3 axis (see Section l?zlé for more details)
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aims to minimize the residuals between the empirical anohsteucted valuesX (Q) — X andF(Q) —F.

Because these signals are of different dimensionality, oredsn different units and subject to different

noise levels, it is appropriate to define scaled residai$Q) = % andAr(Q) = P},?F)T‘g, if the
noise is uncorrelated and has the same variance acrosssensmdry.

By introducing atrade-off parametery between the quality of fit of two acquired modalities, the
regularizationparameten, and regularization functiofi(Q), objective function (1.6) can be extended for

multimodal case as

£(Q) = [[Ax(Q)ll + o[ Ar(Q) [ + A C(Q) (5.1)

wherel € {1,2} is the norm to define specific error cost function &i€)) can incorporate some other
constraints such as the smoothness of the solution in time space, minimal norm of the solution

requirement, etc.

5.2 L, Error, Variable Orientation — Gradient Descent
In the case of = 2, cost function (5.1) is represented as a sum of squaredsaver the residuals. Taking

its derivative leads to a simple gradient descent rule

Q. =Q, - na%g@ ,Wheren is a learning rate (5.2)
08:,(Q) _ 0Ax(Q)  09Ap(Q)  ,9C(Q)
5Q ~ 0Q + 2Q +A 7Q (5.3)
0Ax(Q) . 1 0AR(Q) SR
hq = 267(X-GQ), _2@*<(F QB)B ) (5.4)
where- x - operation corresponds to element-wise product of two cesri
5.3 L, Error, Fixed Orientation
In the case of quadratic error and fixed orientatiQn=£ Q) derivativea%f) simplifies
0Ar(Q) _ . S RT
s = 25iEn(@Q)x ((F —QB)B ) . (5.5)

Instabilities in optimization brought byign(x) can be reduced by using some smooth function which

approximates it well€.g.squashed hyperbolic tangent function).
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It is very appealing to reformulate (5.4) in a presence ost@ntQ > 0

0Ax(Q) 0Ar(Q)

— T _

= 2(F - QB)B”, (5.6)

and if no additional constraints are imposed’(Q) = 0), thenQ can be found as a solution of

06(Q) _ 08x(Q) | 0Ar(Q)
0Q  0Q 0Q
GT(X - GQ) + o (F— QB)B” =0,

=0

G'GQ+Q(aBB") — (aFB" + G'X) =0,

known as Sylvester equation, for which efficient solversexBut presence of the constrai@t > 0

forbids us from using this simple formulation.

5.4 L, Error Minimization - LP Minimization

Using defined abbreviations we formulate an initial LP peoblas follows

X+Ax =X Constraints (5.7)
F+Ap=F (5.8)

gij >0 Region (5.9)
E=|Ax|:1+al|Arll;  Objective, (5.10)

whereqx is used to check different trade-offs between two modaldewell as to normalize their influence
in the optimization criteria.

Next we redefine eaclr|, which are present in computation 6f(5.10) andg;; (5.12), in a form
suitable for LP as shown in Appendix B. These transformatieag to a side effect, namely minimization
of the sum of absolute valugs;|, so we need to add another tefS||; to the objective function (5.10).
This side effect could be considered a desired result - tigmzation of .; norm of the solution results

in its increased sparseness.

Transformation to LP
It is required to agree on the order of how any 2D array is “ld€d” into a 1D sequence. Each unfolded

matrix X is presented as a vectirand it is decomposed row-wise - rows compose unfolded matren
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taken sequentially. So fa® 3N xT" matrix, which is the argument of optimization we want to abta
we get vectorQ 3NT x1 where the order of dimensions growth within the vectot is> sensor —

orientatiorfaxis), therefore time is the fastest growing dimension.

EIMEG Equation in LP form

We can represent (5.7) in a form suitable for LP using the Koker product
GeIQ=X (5.11)
wherel ; is the identity matrix of size&/ x 7.

FMRI Equation in LP form
First we need to encode the definition@finto an LP constraint matrix using an approximation desttib

in Appendix B.2,

wherel(-) is an LP approximation of thé, norm.

In a similar to (5.11) way we represent the prodQdB in a form suitable for LP

F = (Iy®B")Q (5.13)

Final LP form
Finally we group all the constraints and the objective fiorctogether into an extended LP canonical

form,
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(Gel)Q+Ax =X (5.14)

(Ir @ BN)Q+ Ap = F (5.15)

Q- 1(1Q.11Q,:1Q.) =0 (5.16)

Q>0 (5.17)

€ = ||Ax|lr + ol[Ap[ls + 7SIk (5.18)
5.5 Remarks

It is necessary to list restrictions and omitted factorsolhiave to be considered in the given models
when working with real data. Due to the undetermined BOLD fM&infard model, unknown coupling
coefficienté to map neuronal activation (dipole strength) to BOLD siga B.;/||B.;||) yet to be

estimated. Approaches to consider when applying the stegjesethods to real data are

e ¢ parameter can be naturally included in the formulation. Then it simply becomes yet another
argument for the optimization. Fadr; it is necessary to seek for other means of estimation as

following;

e normalization by matching the variances of the producedadggand their fit residuals. This is the

simplest approach but the analysis of occurring bias issseeyg;

e Bayesian approach: either to find the coefficient having makipnobability .e. to find MAP),
or sample model space and find model average based on differesible values of the coefficient.
Bayesian approach requires specification of prior pdf of dedficient, thus can be arbitrarily biased.

Taking uniform probability would lead to a maximum likelib solution;



CHAPTER 6

MULTIMODAL IMAGING: SIMULATION STUDY

This works every time, provided you're lucky

— Unknown soul-mate

As previously emphasized, any novel methodology has to hidatad first on the dataset with
known characteristics of the noise and of the signal of egef.e. of spatio-temporal signals of the
neuronal activation in case of neuroimaging). Due to theabs of a realistic phantom study involving
covered here brain imaging modalities, it was necessaryrtolate the signal and noise conditions. This
chapter describes the protocol used to simulate the dadadgprovides analysis of the results obtained
using different localization methods including the onessented in the preceding chapter. Results of the
analysis using some conventional multimodal metheds.{MRI conditioned DECD) and., norm misfit

methods presented in the previous chapter follow.

6.1 Simulated Dataset Generation
Simulated dataset consists of an ROI region of the brairoumify sampled for possible source locations
and the corresponding simulated brain imaging signals (B#BG and fMRI). Temporal sampling of
the source spadg was taken to be 16 [Hz], which allowed to represent simulaggonal activations as

truncated Gaussian with the deviation of 50 [ms].

6.1.1 Forward Modeling
In this study, conductivity boundaries and cortical suefaevere determined from MRI anatomy of a
template brain [30] (Fig. 6.1). MRI scan, tessellated s@w$a@nd originaEMEG electrodes locations
(181 EEG and138 MEG electrodes) (Fig. 6.2) were provided along wrainstormsoftware package
[106]. Realistic BEM model with 3 compartments (brain+ceaglfluid, skull, scalp with conductivities
0.33, .0042, and0.33 respectively) was used to approximate the solution of tdod EMEG problem
for the 30 sensors of eacAMEG modality which were located in the vicinity of the ROI.

“Hand area” of M1 is the area of interest for this simulatiandy. Therefore appropriate region
defined by239 out of 10, 000 vertices of the whole cortical surface was selected (FRB). 84ean distance

between any two sampled source points Within531elected ROHWanm. The furthest distance between
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Figure 6.1 3 slices of MRI with marked fiducial points (Screenshort fronaiBstorm [106])

any two points within ROI constituted7.4 mm. Region of interest (“Hand area”) was reported to be
considerably smaller - up tt8 mm [39] and lie around th& shaped “knob” covered by the selected ROI
(Fig. 6.3).

Space around ROI cortical area was sampled with the resnolafi2 [mm] to generat&95 possible
source locations, which also constitute a modeling spaciRBI signal (Fig. 6.4) and serve as locations
for dipoles generatingMEG signals.

Each possible source location was characterized with fleatation of a normal of a closest vertex
on the surface of ROI. Such orientation was used for forwaadleting of EMEG signals using pre-

computed BEM models.
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Figure 6.2 MEG (grey) and EEG (yellow) electrodes locations along weéhksellated brain volume
into 4 boundary structures: (listed from the inside out) tefgrey matter boundary (cortex boundary),
inner skull, outer skull, and scalp surfaces (Part of thdl siad scalp surfaces displayed transparent for
visualization purposes. Screenshort from Brainstorm [JLO6]

6.1.2 Additive Noise

Simulation studies often generate additive noise contatimg clean signal using very simplistic models
such as Gaussian white noise. Because suggested fusiondoleiipnprelies on spatio-temporal analysis of
the data, such noise modeling would be overly simplistidliergoals of current study. That is why simple
Gaussian noise and realistic noise from experimental data wonsidered. Realistic noise was obtained
from the epochs of EEG, MEG and fMRI datasets collected dutiagt” periods of the experiments.
Such data were hoped to bear minimal amount of the signalesymnding to spontaneous neuronal
activity, nevertheless careful pre-processing was reduio eliminate signal components which were

caused by muscle artifacts, or had prominent localizations unlikely to be a part of instrumental or

even neurological noise. The details of carried prepracgsse covered in the Appendix D.

6.1.3 Simulation Protocol

Datasets/Activations: Source spacdd) consists 0895 possible source locations during 1 [sec] and at a
sampling rate of 16 [Hz]JEMEG signals were simulated accordingly for a given periodroét(.e.
1[sec]). FMRI signal, due to its time-lagged hemodynamipoese was modeled at a temporal
sampling rate of 1 [Hz] (TR=1 [sec]) for the duration of 10 [skc

Totally 5 datasets were generated. Fitstatasets consist of non-overlapping spatially activation
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Figure 6.3 Contralateral to the right hand central sulcus along with prel post-central gyri (area in
red) were selected as the region of simulated neuronalagicins faking the response to motor actions.
The choice of such region is directed by different imagingl&s of detected elicited neuronal responses
in response to motor actions of the hand and/or fingers [48], {Screenshort from Brainstorm [106])
i.e. when only a single activation could appear in a voxel at scaneélom moment in time. These
datasets have different number of active sources randaspbti@lly and temporally) chosen to be
active: [1, 10, 100, 895] sources. The last dataset hesrandomly activated locations with a
following within 100-300 [ms] second activation at the saspatial locatioh. Activations in all
cases were modeled by a truncated1(8% of area) Gaussian with the deviation of 50 [ms]. Each

dataset ha30 epochs which differed by the randomly chosen source temporal aatia locations

confirming dataset requirements;
EIMEG type: Both EEG and MEG signals are considered (one at a time) foutsierf with fMRI signal;

Noise Type: Two types of noise are used: empirical (as described in &eétil.2) and Gaussian white

noise;

Noise Level: Due to the fact that signals of interest are sparse in timegetis no sense to characterize

noise level as the ratio between signal power and noise powaus the amount of noise added

Datasets were given “codenames” NONOVERLAP1, NONOVERLAP10, ONOVERLAP100,
NONOVERLAP895, and OVERLAP10 accordingly
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Figure 6.4 Region of interest which includes “hand area” of M1 is a sosuace for modeled neuronal
activations

to a signal is defined in terms of the ratio between noise tlemiaand maximal signal amplitude:

e = 0./ max(s). Datasets for following noise leveis= [0, 0.1, 0.2, 0.4, 0.6] were generated;

Trials: For each instance of the signal, noise type, and noise Bévéiials (runs) were generated, so
the same underlying signal was contaminated with differen$e samples. Further, epochs were
averaged. Such transformation reduces noise variance dmtar of\/30. That was done to boost
SNR of the acquired signals — a common practice in neuroingadn the future, these simulated

trials will be used individually to provide statistical ngaes for the quality of the solution.

6.1.4 Algorithms Tested

To validate the advantage of the suggested fusion meth@indcessary to compare its performance to
other methods established in the field. For this study wedesf norms methods (fixed and variable

orientation) against DECD methods (Section 1.3.2) whersdhgion at any given point in time is

Q=G"X, (6.1)

where

GT=WqG (GWqGT) ™. (6.2)



56

DECD solutions were conditioned using a combination of thieong methods

Conditioning of the Inverse: Truncated SVD was used to find stable inversé @W oG "). Singular

values smaller than the projected noise variance wererdisda

Gain Matrix Normalization: Two possible cases were considered: with and without column

_1.

normalization (Section 1.3.2)¥ q = W, = (diag (G'G)) ™ ;

Relative FMRI Weighting: Following the ideas described in Section 3.3.4, considese¢hlues were
[1.0, 0.5, 0.1] which correspond to 0, 50, and 90% of relative fMRI weighting.

Such range of conditioning was hoped to cover the varigbilit possible DECD solutions
conditioned or noti#, = 1.0) by fMRI. Besides that, DECD solutions with variable and fixed (t

original) orientations were considered.

6.1.5 Results

To compare between different methods an error metric ha@ tchbsen. In the current study, quality of
the source time line reconstruction is considered to be thmegoy comparison criterion. Localization
comparison is a much wider topic and will be addressed in titgrd. Quality of the source signal
reconstruction is measured with a quadratic error mea$Qre- Q||2 over the source locations with
present activation. Quadratic error is further normalibgdthe squared norm of the sour€)||3 to
characterize the quality criterion as a relative amountoideé energy brought into the source estimate. To
summarizeF = ||Q—Q||/|/Q||? and thus its minimal valug = 0 corresponds to the perfect restoration
of the sources time course. For each epoch, best resulisatifterently conditioned (as described in the
previous section) DECD solutions was chosen.

Optimization of L, cost function (5.4) was carried out via conjugate gradieith & line search,
which allows to avoid the use of the Hessian which is of unfdaslimension size for this task. A set of
a = 1[0.5, 1, 10] for a tradeoff betweeRWMEG and FMRI fit were used. Only the best result is reported in
the plots.

Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8, and Fig. 6.9 preseatibmparison between the results achieved
using FMRI conditioned DECD methods arid -Fusion method suggested in this work. Plots show
mentioned above criterioft for bothEIMEG signals separately (each one owns a row) and with differen

types of the noise used for modeling of the signals. As it&nhdeom all of the plots, novel method often
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outperforms DECD providing higher quality source signaloretruction with a lighter influence of the
noise level. As expected, the increase in the error of rénaci®n closely follows the increase in number
of activated sourced., method provides much better solution in the case of soupzsadly overlapping
(Fig. 6.9).

Surprisingly, there is a strong difference between EEG alGMesults. There is a much higher
reconstruction error of DECD estimates in case of MEG, egfigdior high noise values and a large
number of activations. Such difference can possible beagx@dl by the fact that a large part of the source
space is located on the surface of pre-motor and post-mgtar which means that such sources are
radially oriented to the skull surface. MEG sensitivity foraging of such sources is known to be poor
even in the cases of realistic head modeling (Section 1.Jipinhim norm solution thus discards such
activations in favor of the minimal norm regularizationnterL, norm method doesn’t explicitly suppress
such activations if they comply with the reconstruction BfRl signal. In the future work, regional
sensitivity analysis will be carried out to verify such exiphtions. Additional simulations utilizing higher
number of sensors might reveal the other source of suchrelifte.

The nature of the added noise (Empirical vs simulated Ganjsdoes not seem to affect the results
much. This fact supports the choice of Gaussian distributar the creation of simulated datasets.
Nevertheless it is important to continue comparing resulte empirical and simulated noise, because

some other performance characteristeg (ocalization quality) might reveal the difference.
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CHAPTER 7

FURTHER RESEARCH

There is no such thing as failure, only results, with some

more successful than others

— Jeff KellerAttitude is Everything, Inc.
Future work requires further analysis of the simulated tatget a better control over the suggested
novel methods, and a better understanding of noise and imgr@al conditions which could provide

stable source reconstruction and localization. Futumections include

e \erify L, -Fusion method on the simulated datasets. So far énlynethods were tested on the
somatotopy simulated data (preliminary results of using-Fusion on other simulations were

reported elsewhere [63]);

e Incorporate, and verify advantages of additional constsge.g.smoothness in time or in space) in

the fusion cost function;

e Extend the models to handle cases of a slight spatial misakgt betweet/MEG sources and

fMRI BOLD signal activations;

e Choose or devise an appropriate localization technique toa@xspatio-temporal activation

locations from the estimated source time courses;
e Analyze complex activation patterns and cover wider areluding SMA, PMA, and SI;

o Verify approaches suggested in Section 5.5 before appbadysis methods to empirical data.

After satisfactory results achieved on the simulated datajll make it reasonable to apply the
suggested methods to the empirical data in attempts torobiastworthy results. Thus next coarsely

grained research tasks should be taken care of

e Elaborate experiment design and acquisition protocol whkwould allow high resolution spatio-

temporal multimodal analysis;

e Estimate empirical HRF for the activationsGié'n the areas arist;
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e Apply suggested multimodal methods to the empirical dataetmver fine somatotopy, and to

complete the challenge — recover the temporal sequencéizdtad fingers.



APPENDIX A

FREE SOFTWARE GERMANE TO MULTIMODAL ANALYSIS OF EEG/MEG/FMRI DATA

Forward

EEG/MEG

G9

EEG MEG Inverse MRI T fMRI  Environment
> . . - _ B -

2 ss8ssa00E& <35 2 80 £ 5 3 3
Package T R R R < R R S SR s s
Brainstorm [106] v v v = v
NeuroFEM [129]/Pebbles / v/ v/ v/ vV v VvV V v Vv
BioPSE [18]/SCIRun [160] +/ + +/ v < = vV = 4
Brainvisa/Anatomist [146] VA v Vv vV vV oV
FreeSurfer [46] vV v vV Vv v Vv
Surefit [180] v v Vv Vv
Brainsuite [163] vV v VvV Vv
EEG/MEG/MRI tlbx [192] +/ v v WV = =2 =2 =2 v Vv VvV
MEG tibx* [124] v Vv VYAV VY
EEGLAB/FMRILAB [40] i v v

TAn extensive MR segmentation bibliography is available online [131].

IPOSIX includes all versions of Unix and GNU/Linux. Most POSIX padsatisted use X Windows for their graphical output.

*Matlab Toolbox.



APPENDIX B

CANONICAL FORM FOR LP

Above we have freely used the minimum operator in formula lik= min(b, ¢), the absolute value
functiony = |z|, and other constructs not allowed in the canonical form dhear program. In this
section we describe a general technique for reducing amystéinear equalities and inequalities which

include minimization of the.; norm,

- | andmin(-, -) operators, along with a linear objective function,

into a linear programming problem in standard canonicahfor

B.1 Absolute Value
Commonly accepted way to deal with absolute value fungtien|z| in LP is to represent as a difference
of two non-negative numbers, with| as their sum. Minimization of the sum would force one of them t

become), with the other corresponding to|:

r=x" —a" (B.1)
2| =2t + a2 (B.2)
xt >0 (B.3)
>0 (B.4)

while minimizing |z|

B.2 Minimal Value

To obtaina = min(b, ¢) we first relax it to

a < min(b, c), (B.5)

Inclusion of a—a term in the objective function will lead to maximization @ethus achieving the

necessary equality. Equality (B.5) can be easily repredenta form suitable for LP
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a—b<0

a—c<0

Approximation of /s norm in LP
The magnitude of a dipole with moment vectar= (z, y, z) is ||m|| = /22 + 42 + z2. We assume that
FMRI readings are related linearly to dipole magnitudes. riteoto fit this into an LP framework, we
need a way to approximate= ||m|| within an LP. Our solution is to note that then(-, -) and modulus
| - | functions can be used freely in a LP and then reduced to cealoftirm using the transformation

described below. For our method, i8R} be a set of rotation matrices. To approximgia|| we let

e; = |[Riml|; € = mine; (B.6)

where|| - ||, denotes thé; norm. These can simply be added to the linear programminiglgarg
enforcing the relation ~ ||m||. We can increase the number of matrices in the set to imphavadcuracy

of this approximation, at the expense of computationaliefficy.



APPENDIX C

3D RIGID TRANSFORMATION VIA QUATERNIONS

7

To find the minimum of the squared error functiefR, v) = Z(XM — xF7M)2 (Section 3.1.1), it is

necessary to calculate a principal eigenvector

tr(32) AT
r = max_eigenvector )
A S+ (D)

where
(2 -3y
P P T
X=X S =5y (k= x")(x = %) A=|(E-3y
(-3

The eigenvector can be assumed to be normalized (unit length). Regarded astergion,r =

[ro.71,72,73] " uniquely defines the rotation. This can be converted intoaetional rotation matrix

Tg + T% — T% — T?) 2(7“17“2 — 7”07’3) 2(7”17“3 -+ 7"07’2)
R=| 2(riry+1ror3) 2+ —ri—1r2 2(rors — 1ror1)
2(ryrs — rore) 2(ror3 + 1o71) 7“(2) + r§ —r2 2

The translation vector is then= x" — Rx”.
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APPENDIX D

DATA PREPROCESSING TO OBTAIN EMPIRICAL NOISE SAMPLES

Raw EEG and fMRI data collected during rest periods had to bemeessed before being added to the
generated signal. MEG noise signal was taken from the phastody, thus by definition it didn’t contain
any artifacts and only instrumental noise. That gives MEG@itazhal advantage and first two steps of

preprocessing were omitted for MEG signal. The followinggqassing took place:

Filtering To prepareEMEG signals for the next preprocessing stage, MEG (Fig. D.1) data was
filtered using bandpass filter to allow only2 — 30 Hz frequency components. Similar signal
preprocessing is usually carried in conventional brairgimgdata analysis to eliminate frequencies
irrelevant to the design and to the expected neuronal regpery. DC components, slow drifts,

power-line background).

Irrelevant features removal ICA (Infomax [16]) has been applied [139] MEG data to extract the
sources which are different from simple noisy componentsrather correspond to some electro-
physiological activity €.g. muscle noise, eye movements) which is not of interest of ikieng
study. Visual inspection of the components time courseg. (Bi3) and projected topographies
(Fig. D.4) allows to identify the components which are axtté due to electro-physiological activity
(components 1, 4), relevant for the events of the experinf@mponents 8, 9, 20, 22) or just
sharply localized (components 11, 19), thus they are highpyrobable to be noise components for

our purpose;

Downsampling To prepareEIMEG noise signals for down-samplingMEG time-trends were filtered
using bad-pass filter to permit only5 — 8 Hz frequency components. Upper limit 8Hz was set
to match the temporal resolution of the modeling environnféfisamples/sec). fMRI time series

was high pass filtered 0.1 Hz to remove present time trends;

Normalization To gain control of the amount of noise added to the simulaiguss, all noise signals
were normalized to have unit variance (Fig. D.5). AlthougtractedEEMEG noise signal indeed

has distribution close to Gaussian (Fig. D.6), its tempadhnakacteristics show a prevalence of lower
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frequency components (Fig. D.7). To reduce impact of cati@hs across channels, noise samples

were taken with arbitrary temporal delay varying acrosssesn
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Figure D.1 Raw EEG signal shows a lot of present high frequency noise,flequency trends and
artifacts present in the signal.
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Figure D.4 Using the separation matrix obtained during ICA it is possibl visualize influence of each
component on each sensor, thus creating topographic maps.
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